
[0]Program= Declaration Commands | [1]Commands

[2]D::= ide OTheridentifiers ;

[3]O::= ide O | [4] ε

[5]Cs::= Command ; Cs | [6] ε

[7]C::= Assign | [8] While

[9]A::= ide := Expression

[10]W::= while E do C Cs endwhile

The The GrammarGrammar
DeclarationsDeclarations--CommandsCommands

The Imperative Language Simple

[11]E::= F E'

[12]E'::= op-lower F E' | [13] ε

[14]F::= Term F'

[15]F'::= op-hight T F' | [16] ε

[17]T::= num | [18] ide | [19] (E)

The The GrammarGrammar
ExpressionsExpressions

1) 1) All All the the used identifiers used identifiers are are correctly declared correctly declared

2) 2) All ther declared identifier All ther declared identifier are are used used

3) 3) All All the the variables have an assigned values before variables have an assigned values before the the useuse

4) 4) Iterator guard expressions have type booleanIterator guard expressions have type boolean

Correlated OccurrencesCorrelated Occurrences

u: - set of the used identifiers
 - synthesized synthesized of Su={of Su={CsCs,C,A.W,E,E,C,A.W,E,E’’,F,F,F,F’’,T},T}
 - ∀∀XX∈∈Su, X.u=I Su, X.u=I iff iff X=>*X=>*αα≡≡αα11......ααnn∈∈∑∑* and * and if if ααii==ide then ide then ααii..lexemelexeme∈∈II
d: - set of the declared identifiers -
 - synthesized synthesized of of SdSd={D,O}={D,O}
 - …
r: - set inclusion of the used into the declared ones
 - synthesized ynthesized of {P}of {P}
 - r=ur=u≤≤dd

Set are handled by list with the following operations

cons: ide X ide-list --> ide-list
emptylist : --> ide-list
append : ide-list X ide-list --> ide-list
included : ide-list X ide-list --> boolean
isempty: ide-list --> boolean

Values Values and and auxiliary functions that auxiliary functions that are are used used in the in the actionsactions

All All the the used identifiers used identifiers are are correctly declaredcorrectly declared
Choice Choice of the of the attributesattributes

Attribute Attribute Plan: Plan: names names and and properties properties of the of the attributesattributes

E’::= ε

uin: - set of the variables that have been assigned to, in the sequence that precedes the current statement
 - inherited inherited of Su={of Su={CsCs,C,A.W,E,E,C,A.W,E,E’’,F,F,F,F’’,T},T}
 - ……..
uout: - set of the variables assigned to, in the sequence ended by the current statement
 - synthesized synthesized of of SdSd={={CsCs,C,A.W,E,E,C,A.W,E,E’’,F,F,F,F’’,T},T}
 - ……..
r: - predicate rhat holds if the used ave been previously assigned to
 - synthesized ynthesized of of allall the program the program structuresstructures, , but declarationsbut declarations, {P,C,, {P,C,CsCs,A,W,E,E',,A,W,E,E',……}}
 - ……

Set are handled by list with the following operations

cons: ide X ide-list --> ide-list
emptylist : --> ide-list
append : ide-list X ide-list --> ide-list
included : ide-list X ide-list --> boolean
isempty: ide-list --> boolean

Values Values and and auxiliary functions that auxiliary functions that are are used used in the in the actionsactions

All All the the variables variables are are correctly initializedcorrectly initialized
before before the the useuse

P.r:= Cs.r , Cs.uin:=emptylist
P.r:= Cs.r , Cs.uin:=emptylist

Cs1.r:=(C.r&Cs2.r), C.uin:=Cs1.uin
Cs1.uout:=Cs2.uout,Cs2.uin:=C.uout
Cs.r:= true,Cs.uout:=Cs.uin
C.r:= A.r, A.uin:=C.uin,
C.uout:=A.uout
C.r:= W.r, W.uin:=C.uin,
C.uout:=W.out
A.r:= E.r, E.uin:=A.uin,
A.uout:=cons(ide.lexeme,A.uin)
W.r:= (E.r & C.r), E.uin:=W.uin,
C.uin:=W.uin,W.uout:=C.uout
E.r:= (F.r & E'.r), F.uin:=E.uin,
E'.uin:=E.uin,

F'.r:= true
T.r:= true
T.r:= isin(ide.lexeme,T.uin)
T.r:= E.r, E.uin:= T.uin

?
[0]P::= D Cs
[1]P::= Cs
[2]D::= var ide O
[3]O1::= , ide O2

[4]O::=ε
[5]Cs1::= ; C Cs2

[6]Cs::= ε
[7]C::= A

[8]C::=W

[9]A::= ide := E

[10]W::= while E do C endw

[11]E::= F E'

[12]E'1::= op-l F E'2

[13]E::= ε
[14]F::= T F'
[15]F'1::= op-h T F'2
[16]F'::= ε

?
[17]T::= num
[18]T::= ide
 [19]T::= (E)

C.uout = emptylist

W.uout = W.uin

To Be CompletedTo Be Completed

Type Checking Type Checking (1)(1)
A Case A Case AnalysisAnalysis

• Extending the language with basic types: A Grammar
• Planning Type Analysis: Updating Symbol-Table
• Inheriting the list of the variables of a given type
• Using a different grammar:

– Inheriting the type of a given list: But (… is it an L-attributed grammar?)
– Only sinthesized attributes: Is it possible?

[0]Program= Declarations Commands | [1]Commands

[2]Ds::= Var Dtypeds

[3]Dts::= Dt Dts'

[4]Dts' ::= ; Dt Dts' | [5] ε

[6]Dt::= ide Otheridentifiers

[7]O::= , ide O | [8] : tYpe

[9]Cs::= ; Command Cs | [10] ε
[11]C::= Assign | [12] While
[13]A::= ide := Expression
[14]W::= while E do C Cs endwhile

[15]E::= F E'
[16]E'::= op-lower F E' | [17] ε
[18]F::= Term F'
[19]F'::= op-hight T F' | [20] ε
[21]T::= num | [22] ide | [23] (E)

[24]Y::= boolean | [25] integer | [26] file | ...

An LL(1) Grammar for SimpleAn LL(1) Grammar for Simple
extended with basic typesextended with basic types

We are dealing with side-effects (SDD):
- Modifications of the Symbol-Table: adding types
- Operation on symbol table: Addtype: entry X type

Updating Symbol-Tables withUpdating Symbol-Tables with
Types for VariablesTypes for Variables

AttributesAttributes::
 entry:- row of the symbol table
 -synthesized of the program variables, ide
 t : -type expression
 -synthesized of type annotation, Y
 ty : -list of the entries
 -inherited of variable declaration, Dt,Dts, Dts', O

To Be CompletedTo Be Completed

Noting the use of theNoting the use of the
iteratoriterator-based action-based action

AttributesAttributes:
 entry:- row of the symbol table
 -synthesized of the program variables, ide
 t : -type expression
 -synthesized of type annotation, Y
 ty : -Type expression
 -inherited of variable declarations, Dt,Dts, Dts', O

…that avoids the use of the iterator-based action.

Updating Symbol-Tables withUpdating Symbol-Tables with
Types for VariablesTypes for Variables

Another GrammarAnother Grammar……

No of course, since in production [4], Dt inheriths from its right brother Y.

A different use of the attributes

ButBut
is the preceding one, an L-attributedis the preceding one, an L-attributed

Grammar ?Grammar ?

AttributesAttributes::
 entry:- list of the symbol table rows of the variables
 - synthesized of variable declarations: Dt, O
t : -type expression
 -synthesized of type annotation, Y

Operation on symbol table: Addtype-set: list-of-entries X type

First and second solutions are similar:
 - Both are using one inherithed attribute;
But they differ for:
 - The first one is L-attributed whilst second one is not;
 - The first one is using one iterator-based action whilst second one is not;
Hence, third solution seems the best one, since: they differ for:
 - It L-attributed and also S-attributed
 - It is not using any iterator-based action.
In fact, this is not the case, since:
 - addtype-set is a masking of an iterator-based action by using a set
 operator
 - Next slide contains the definition of one 2-attributed, S-attributed, Gram-
 mar that is:
 + a Variant of the first one
 + it is really, not using iterator-based actions

Comparing SolutionsComparing Solutions

…
[6] DtDt::= ide OO addtype(Ide.entry,OO.t)
[7] OO11::= , ide OO22 addtype(Ide.entry,OO22.t); OO11.t::= OO22.t
[8] OO::= : YY OO.t::= YY.t
…
[24] YY::= boolean Y.t::= boolean
[25] YY::= integer Y.t::= integer
[26] YY::= file Y.t::= file

A Variant of the first Grammar

AttributesAttributes::
 entry:- row of the symbol table
 -synthesized of the program variables, ide
 t : -type expression
 -synthesized of Y, O

Updating Symbol-Tables with Types for VariablesUpdating Symbol-Tables with Types for Variables

 Different Syntactic Grammars lead to attriDifferent Syntactic Grammars lead to attri--
 bute plans that differ bute plans that differ one one another foranother for: : numnum--
 ber ber and and properties properties of the of the used attributesused attributes

 Some Some SynSyn. . Grammar allow Grammar allow more more plans thanplans than
 other other and and with different difficulty levelswith different difficulty levels

 Given an Given an LL (LR) LL (LR) grammargrammar, non L-, non L-attribuattribu--
 ed ed plans plans can can be found before to realize howbe found before to realize how
 to define to define one plan one plan that is that is L-L-attributedattributed

Choose Syntactic
Grammar carefully

Choose the Plan
carefully

Concluding RemarksConcluding Remarks

Type Checking Type Checking (2)(2)

• Associating Types to Program Structures: Typing
Rules

• Extending the attribute plans of the previous
Grammars

• Derived Types: Typing Rules
• Coercion and overloading: Typing Rules
• Extending the attribute plans of the previous grammars

Assigning Types to Program StructuresAssigning Types to Program Structures
of a Strongly Typed Languageof a Strongly Typed Language

TypesTypes

Types=Basic-Types +N +Types X Types ->TypesTypes=Basic-Types +N +Types X Types ->Types

RulesRules
Γ|- i:t Γ|- e:T Γ|-e:boolean Γ|-Cs: N Γ|-C:N Γ|-Cs:N
 Γ|- i:=e:N Γ|- while e do Cs :N Γ|-C;Cs : N

 Γ|-e1:T1 Γ|-e2: T2 Γ|-op:T1xT2->T Γ,i:Ti,j:Tj |-e:T
 Γ1,i:T,Γ2|- i:T Γ|- op(e1,e2):T Γ|-fun(I,j){e} : TixTj->T

AttributesAttributes::
 r:- type of all the program structures but expressions
 -synthesized of P,C,Cs,A,W
 type:- type of expression
 -synthesized of E and E'
 in: -type expression
 -inherited of E'

It is extending the first grammar in its
last variant discussed in variant

