| Y ot ] ol
1y SIS

(Third) Last Step of Compiler Front-End

Compositional and Contextual
Property Analysis



 Main Properties:
— Uniqueness

— Well formed (control) Structures

— Correlated Occurrences
 Types:

— Type Systems

— Type Checking

— Type Inference



Uniqueness
- no name collision (for instance, in a block, or definition..)

Well Formed Structures
- Checkings for correct use of construct composition:

 in C, break may only, occur inside blocks;

* in Java, no hiding variable is permitted in blocks

* in Java, classes implementing interface must contain
definitions for the interface methods

e in Pascal, the for-block cannot modify for-index

e Expressions used as by-reference parameters must
have [-values



Correlated Occurrences
- Specific Checkings for the correct use of the constructs:

e A declared identifier must occur 1n some use

* In many languages, a used identifier must be declared with
the right scope.

e in Pascal, the function body must contain an assignment
to the function name;

* In C, non-void procedure bodies must contains return exp



Are a Special Kind of Terms that:

* are assigned to the program structures

e are fundamental for classifying program structures with
the aim of:
e studying (semantic) correctness of the structure use
e preventing run-time errors
e allow code optimizations at compile/run-time

* are expressed by a suitable set of expressions:
e called Type Expressions and
e are obeying the laws of a specific system, called
Type System



1) Basic (or Atomic) Types
real, int, char, file, unit
2) Type Constructors for Derived Types
array: I x T -> array(I,T)
product: T1 xT2 ->T1 % T2
record: ({i1}xT1)x.x({ik}xTk) -> record(il:T1...ik:Tk)
enumerated: {vl,..,vk} -> (vl,..,vk)
pointer: T -> pointer(T)
function: TDxTC ->TD =2 TC
procedure: TD -> TD = unit

3) Type Identifier (for naming)

4) Type Variables (for polimorphic types)



Rules

e Form the set of rules that associate types to the Lang. Structure

e They depend on the language

* May exhibit very different properties for the different languages

e But, always only one type can be associated to each program
structure

'»>gTl<=T2 I »»eTl F#>gSIC, T=eTlC,
C=C,uC,u{S=T1 <T2,T=Tl}
I'»> g(e):T2
'#»> g(e):T21C

Function invocation in a

i Function invocation in a
type Checking System

type Inference System
using Unification as Constraint Sover for C



Selection of the Grammar G

Examples of correlated occurrences tor L(QG)
How to do Analysis: Choise of the attributes
The Attribute Grasmmar

Another Example



