
1

E::= F E' [0]

E'::= + E [1]

E'::= ε [2]

F::= H F' [3]

F'::= * F [4]

F'::= ε [5]

H::= num [6]

H::= (E) [7]

E.tree:= mk-tree('E', F.tree, E'.tree),
F.depth:=E.depth+1, E'.depth:=E.depth+1
E'.tree:= mk-tree('E'', mk-leaf('+'), E.tree),
+.depth:=E'.depth+1,E.depth:=E'.depth+1
E'.tree:= mk-tree('E'', mk-leaf('ε'))
ε.depth:=E'.depth+1
F.tree:= mk-tree('F', H.tree, F'.tree),
H.depth:=F.depth+1, F'.depth:=F.depth+1
F'.tree:= mk-tree('F'', mk-leaf('*'), F.tree),
*.depth:=F'.depth+1, F.depth:=F'.depth+1
F'.tree:= mk-tree('F'', mk-leaf('ε'))
ε.depth:=F'.depth+1

H.tree:= mk-tree('H', mk-leaf(num)),
num.depth:=H.depth+1
H.tree:= mk-tree('H', mk-leaf('('), E.tree, mk-leaf(')')),
E.depth:= H.depth+1, (.depth:=H.depth+1,
).depth:=H.depth+1,

Let mk-tree be an arity-variant procedure that applies to a label and to n trees and results the tree rooted
on a node having, as label, the first argument, and, as sons, the n trees, in the order of appearance from left.
Say: 1) the type of the attributes; 2) the family L{ai}; 3) the value of each attribute relating to 2+3.

E::FE’ [0] E’::=+E [1] | [2] ε
F::=HF’ [3] F’::=*F [4] | [5] ε
H::=num [6] | [7] (E)

0.t=E-1.t,2.t E 0.d=⊥

1.t=F F 1.d=0.d+1 2.t=E’ E’ 2.d=0.d+1

3.t=… H 3.d=…

4.t=… E’ 4.d=…

Apply Attribute Grammars toApply Attribute Grammars to
Parse Trees: An ExerciseParse Trees: An Exercise

2

Two Kinds Two Kinds of of AttributesAttributes::
Syntesized Syntesized - - InheritedInherited

0.t=E-1.t,2.t E 0.d=⊥

1.t=F F 1.d=0.d+1 2.t=E’ E’ 2.d=0.d+1

3.t=… H 3.d=…

4.t=… E’ 4.d=…

Node 1 occurs, in the tree, in 2 different way:
• left side grammatical of
 E::= E::= FF E' E'
• right side grammatical of
 FF::= H F'::= H F'

Hence, attributes of node 1 can be defined in actions of:
2 different attribute productions:

This is the case of our grammar:
 F.F.depthdepth is defined in E::= E::= FF E' E'
 F.F.treetree is defined in FF::= H F::= H F’’

Attribute:
F.F.depthdepth is called Inherited Inherited
F.F.treetree is called Syntesized Syntesized

3

Syntesized AttributesSyntesized Attributes
Let GA ≡ {∑,V,s,PA,{ai}} be an attribute grammar.
Let p≡B:=β {α}∈ PA.
Let X.a be an attribute occurring in {α}. Then
X.a is a synthesized attributesynthesized attribute if and only if one the two:

• ∃ X.a=e ∈{α} and X≡B
• ∃ Xi.aij=eij ∈{α} and X.a ∈Var(eij) and X ∈Sym(β)

where: Sym(β) is the set of grammatical symbols in β
 Var(e) is the set of attributes occurring in e

A Pragmatic View:A Pragmatic View:
• Attribute of the node only depends
 from attributes of the sons
• It expresses Compositional Properties

0.t=E-1.t,2.tE-1.t,2.t E 0.d=⊥

1.t=F F 1.d=0.d+1 2.t=E’ E’ 2.d=0.d+1

E::= F EE::= F E’’ {{ E.E.treetree:= := mkmk--treetree('E', F.('E', F.treetree, E'., E'.treetree))……}}

Let GA ≡ {∑,V,s,PA,{ai}} be an attribute grammar.
Let X be a grammatical. Then

A-Syn(X) is the set of all Syntesized attribute of X in GA

4

Inherited AttributesInherited Attributes
Let GA ≡ {∑,V,s,PA,{ai}} be an attribute grammar.
Let p≡B:=β {α}∈ PA.
Let X.a be an attribute occurring in {α}. Then
X.a is an inherited attributeinherited attribute if and only if one the two

• ∃ X.a=e ∈{α} and X≡Sym(β)
• ∃ Xi.aij=eij ∈{α} and X.a ∈Var(eij) and X≡B

where: Sym(β) is the set of grammatical symbols in β
 Var(e) is the set of attributes occurring in e

A Pragmatic View:A Pragmatic View:
• Attribute of the node only depends
 from attributes of the context (father, brothers)
• It expresses Contextual Properties

0.t=E-1.t,2.t E 0.d=⊥

1.t=F F 1.d=1.d=0.d+10.d+1 2.t=E’ E’ 2.d=0.d+1

E::= F EE::= F E’’ {F.{F.depthdepth:=E.:=E.depthdepth+1)+1)……}}

Let GA ≡ {∑,V,s,PA,{ai}} be an attribute grammar.
Let X be a grammatical. Then

A-Inh(X) is the set of all Inherited attribute of X in GA

5

Applications Applications of theof the
Attribute GrammarsAttribute Grammars

• Power: Context Sensitives and Attribute Grammars
• Attribute Evaluation: Three Execution Methods
• Oblivious and L-Attributed Grammars
• Bottom-up Executors for S-Attributed
• Top-down Executors for L-Attributed
• Bottom-up: Transformations for L-Attributed

6

S::=A E
A::=u A v B | e
B v::= v B
B E::= z
B z::= z z

• Such a grammar is difficult to write and even worse to analyzeSuch a grammar is difficult to write and even worse to analyze
•• Context Sensitive Analyzers are complicated to build and Context Sensitive Analyzers are complicated to build and impr impr--
 actical actical to useto use
•• Attribute Grammars Attribute Grammars can can be profitably usedbe profitably used

Attribute grammars areAttribute grammars are
greatly powerfulgreatly powerful

because of the combination with a meta that can be a programming language

Consider the language L2 on the
right side. L2∉ CF, and a Context
Sensitive grammar for L2 is shown.

LL22={={uunnvvnnzznn | n| n≥≥0}0}

7

L1={u n vk zn | n,k ∈N}

• Select a language L1∈ LL(1) including the language we are interested in:
 uunnvvnnzzn n ⊂⊂ L L11

• Let G be a LL(1) grammar for L1
 SS’’::= S ::= S

 S::= u S z | V S::= u S z | V
 V::= v V | V::= v V | εε

• Extend G into an Attribute Grammar that computes an attribute of S’ to
 true if and only if the analyzed string belongs to L(G), hence has form
 unvmzk and n=m=k.

SS’’::= S ::= S {S.r=(S.u==S.v)&(S.u==S.z)}{S.r=(S.u==S.v)&(S.u==S.z)}
 S S11::= u S::= u S22 z z {S{S11.u=S.u+1; S.u=S.u+1; S11.v=S.v=S22.v; S.v; S11.z=S.z=S22.z+1}.z+1}
 S::= V S::= V {S.u=0; S.v=V.v; S.z=0}{S.u=0; S.v=V.v; S.z=0}
 V V11::= v V::= v V22 {V{V11.v=V.v=V22.v+1}.v+1}
 V::= V::= εε {V.v=0}{V.v=0}

Using an LL Attribute Grammar forUsing an LL Attribute Grammar for
AnalyzingAnalyzing uunnvvnnzznn

8

• Construct the Parse Parse TreeTree, T
• Construct the Dependency GraphDependency Graph, Td of T
• Find, if any, a Topological SortTopological Sort M Td for Td
• Visit Td according to M Td and Execute the
 actions associate to the nodes

A.p1

B.q1 C.r1

A.p2
A.p3

B.q2 C.r2

A.p

B

A

C

TT
TTdd

A.p, A.p1, C.r1
B.q1, A.p2
A.p3,
B.q2
C.r2

Node ActionAttribute
C C.r1
A A.p2 - A.p - A.p1
A A.p3
B B.q1 - B.q2
C C.r2

MM TdTd VisitVisit

1) Parse Parse TreeTree:

-Only for Multi-Pass Parser/Compiler
-Method applies at Compile Time

Attribute EvaluationAttribute Evaluation
Three different evaluation tools

9

2) RuleRule--basedbased:

- Also for one-Pass Parser/Compiler
- Method applies at Compile Construction Time

Ad Hoc Construction: The resulting code is hard to modify

• For each production:
• Analyze the meaning of the actions occurring in it
• State a proper execution order proper execution order for the actions

• Combine such an order with the Parse-Tree constructor:
• Only one Code for Parse-Tree construction and Action execution
• VersusVersus Distinct, Correlated, Codes

Attribute EvaluationAttribute Evaluation
Three different evaluation tools - 2

10

3) ObliviousOblivious:

- Only for one-Pass Parser/Compiler
- Method applies at Compile Constrution Time

• The execution order execution order for the actions is established according to:
• same criteriasame criteria for all propductions
• criteria that ignore ignore the the meaningmeaning of the actions
• but are adequate for executing actions in the correct wayexecuting actions in the correct way

• Action Execution is combined with Parsing:
• Top-Down Top-Down ExecutorsExecutors
• BottomBottom-Up -Up ExecutorsExecutors

• Parser GeneratorsParser Generators are extended to Attribute Grammar EvaluatorsAttribute Grammar Evaluators

Attribute EvaluationAttribute Evaluation
Three different evaluation tools - 3

11

•• How How can can Parsing Parsing and Action and Action Evaluation be combined Evaluation be combined ??
 - At each derivation/reduction, the production actions are evaluated

•• When actions When actions are are evaluated evaluated in in this this way, way, what part what part of the Parse-of the Parse-Tree Tree
 has already been traversed has already been traversed and and thenthen, , known to known to the the actionsactions??
 - The nodes of a DepthDepth-First-First visit of the Parse-Tree up to the
 current input:

+ Top-Down: Top-Down: Preorder Depth Preorder Depth FirstFirst
+ BottomBottom-up: -up: Postorder Depth Postorder Depth FirstFirst

• Parser Generators can be extended into Oblivious Evaluators of a
 attribute grammar G if:
 DepthDepth-First -First visit is visit is a a Topological Sort Topological Sort of the of the Dependency Graph Dependency Graph of Gof G

Attribute EvaluationAttribute Evaluation
Parser GeneratorsParser Generators as Attribute Grammar Oblivious EvaluatorsAttribute Grammar Oblivious Evaluators

12

-- S- S-attributed Grammarsattributed Grammars are containing only synthesized attributes
- S-attributed are L-attributed.

Theorem. If G has Top-Down/Bottom-up Parser and GA is L-attribued
then GGA A has has Top-Down/Top-Down/BottomBottom-up -up oblivious evaluatoroblivious evaluator

L-Attributed GrammarsL-Attributed Grammars
L-Attributed Grammars is a classa class of Attributed Grammars (or SDD)
that has DepthDepth-First-First as a Topological SortTopological Sort of the Dependency GraphDependency Graph
of the Parse-Parse-Tree attributesTree attributes of the grammar.

Let GA ≡ {∑,V,s,PA,{ai}} be an attribute grammar.
Let p≡B:=B1…Bn{α}∈ PA.
GA is L-attributed if and only if:
∀Xi.aij=eij ∈{α} for Xi ∈ Sym(B1…Bn):
 if Xk.aik ∈ Var(eij) then:
 - either Xi≡Bhi, Xk≡Bhk and 1≤hk ≤ hi≤n
 - or Xk≡B and aik ∈A-Inh(B)

13

Extend the values of the push-down automata, LR control stack:
• Associate to each grammatical symbol B:

• the syntesized attributes or none (if it has no attribute)
• the transtion state of LR analysis

• At each reduction with handle A::=B1…Bn {α} compute all the actions in {α}.
 - Let A.ai=ei be one of them.
 If ei contains occurrences of attributes of the grammatical Bi then:

 - access (n-i)-th position, below the top of the stack, and
 - select the value Ii Bi [vi] (where [vi]≡vi1…vin) and find the correct vij

 - Let [v]≡v1…vm be the values resulting for the attributes a1…am of A.
• Reduce and insert Ij A [v], where Ij is the transition state of LR analysis.

I
B B.s

I B B.s

BottomBottom-Up -Up Evaluator for Evaluator for S-S-attributedattributed
How How do do it by extending it by extending LR LR ParsersParsers

14

(k) A::=B1…Bn {α} Action(In,x)=R/k

x

Each Bi and its attributes Bi.s are computed by
the previvious reductions (sons - depth first)

A.s=α has been just computed: It can only depend
from A-Syn(Bi) (A’s sons) that are in the stack

Goto(Jm,A)=I

In Bn Bn.s

I1 B1 B1.s
Jm Am Am.s

….

x

I A A.s
Jm Am Am.s

input

Control
 Stack

State

Symbol

Attribute

 Before
reduction

 After
reduction

production LR Table

How do it: LR Control StackHow do it: LR Control Stack

15

Translation SchemesTranslation Schemes = Grammars with Productions where actions
 and grammatical symbols are mixed

A::={β1}B1...{βk}Bk{α}
in a way that:

• A-Inh(Bi) are defined only in actions {βi} that precede Bi (for ach i)
• A-Syn(A) are defined in {α}

Top-Down Top-Down Evaluators for Evaluators for L-L-AttributedAttributed
From From L-L-Attributed to Translation SchemesAttributed to Translation Schemes

If G is L-attributed, its TS has actions that can use only, attributes
of symbols that precede the actions.

16

•• TransformTransform L-attributed in in Translation SchemeTranslation Scheme
• Pair the LL control stack, C, with

• one data stack for synthesizedstack for synthesized values, SS,
• one data stack for inheritedstack for inherited values, II.

• Extend Extend CC to contain actionsto contain actions:
• At At each derivationeach derivation with A::={A::={ββ1}B1...{1}B1...{ββk}k}BkBk{{αα},},

• {β1}B1...{βk}Bk{α}
•• (Let B0≡A and βk+1≡α)
 When an When an action action ββii (1≤i≤k+1) is selected from the top of C

• Action is evaluatedis evaluated::
• by using by using the the evaluatorevaluator of Meta, and
• by replacing attributesby replacing attributes of:

• BjBj (j<i) with the values extracted, from I or S, at the (i-j-1)-th position from top
• A - A - as above, by letting: B0≡A and βk+1≡α

• by putting its resultby putting its result on on:
• the top of Itop of I, if action is βi
• k-k-thth position position below below top of S, if action is α

B B.sB.i B B.s B.i

Top-Down Top-Down Evaluator for Evaluator for L-L-attributedattributed
How How do do it by extending it by extending LL LL ParsersParsers

17

(k) A::={β1}B1…{βn} Bn {α} M(A,y)=k

A A.i -

y

A.i -

y

β1
B1

βn
Bn
α A.i

y

B1

βn
Bn
α -

-B1.i -

A.i comes in from the previous deriva-
tion that involved its brothers at left B1.i=β1 can contain only inherithed of AStack C Stack I/S

How do it: LL Control StackHow do it: LL Control Stack - 1

18

A.i

?

β2
B2

βn
Bn
α -

-B1.i B1.s
A.i

?

A.sA.i

?

α -
-B1.i B1.s

-Bn.i Bn.s

All the attributes that α can use Top of Data Stacks just after the
derivation from A completes

How do it: LL Control StackHow do it: LL Control Stack - 2

19

Transform: (n) A::={A::={ββ1}B1...{1}B1...{ββk}k}BkBk{{αα}}
in

 A::=MA::=Mn1n1 B1... B1... MMnknk Bk Bk{[{[αα]}]}
 M Mn1n1::= ::= εε {[{[ββ1]}1]}

......
 MMnknk::= ::= εε {[{[ββk]}k]}

Inner ActionsInner Actions of the descendant schemes are transformed into final actions of ε-productions
that are introduced by the Markers.

One MarkerMarker uniquelyuniquely identifies identifies the position,the position, inside a production, and allows to handle:
 inherited attributes of a symbol as synthesized attributes of a marker

TranslationTranslation
DescendantDescendant
 Scheme Scheme

Translation Translation
 Ascendant Ascendant
 Scheme Scheme

L-L-attributed Bottomattributed Bottom-up-up
 TransformationsTransformations: : MarkersMarkers

20

Transform: (n) A::={A::={ββ1}B1...{1}B1...{ββk}k}BkBk{{αα}}
in

 A::= A::= AAnknk Bk Bk{[{[αα]}]}
 AAnknk::= ::= AAnknk-1-1Bk-1 {[Bk-1 {[ββk]}k]}

......
 A An2n2::= A::= An1 n1 B1{[B1{[ββ2]}2]}

 A An1n1::= ::= εε {[{[ββ1]}1]}

Descendant
 Scheme

Ascendant
 Scheme

L-L-attributed Bottomattributed Bottom-up-up
 TransformationsTransformations: : FactorizationFactorization

Inner ActionsInner Actions of the descendant schemes are transformed into final actions of productions
of the new added grammaticals that are as many as the positions inside the production.

The new symbol Anj uniquelyuniquely identifies identifies the j-the j-th th position,position, inside n-th production of A, and allows to handle:
 inherited attributes of a symbol as synthesized attributes of new symbol

21

S::=U {U.n=0;}
U::=U1 a {U1.n=U.n+1;}
U::=ε {print(U.n);}

S::= {U.n=0;} U
U::= {U1.n=U.n+1;} U1 a
U::= {print(U.n);}ε

Translation scheme

M
A
R
K
E
R
S

S::= M1 U
U::= M2 U1 a
U::= M3 ε
M1::= ε{U.n=0;}
M2::= ε{U1.n=U.n+1;}
M3::= ε{print(U.n);}

S::= M1 U
U::= M2 U1 a
U::= M3 ε
M1::= ε{push 0;}
M2::= ε{push(top+1);}
M3::= ε{print(top);}

Stack Action Translation

Marker Marker Based TransformationBased Transformation
 How How do do actions have to be changedactions have to be changed??

22

S::= M1 U
U::= M2 U1 a
U::= M3 ε
M1::= ε{push 0;}
M2::= ε{push(top+1);}
M3::= ε{print(top);}

S::=U {U.n=0;}
U::=U1 a {U1.n=U.n+1;}
U::=ε {print(U.n);}

How does depth-first tree visit change
(postorder)

0(S)

1(u)

3(U)

2(U)

4(ε)

5(a)

6(a)

0(S)

2(U)

4(U)

1(M1)

5(M2) 6(U)

10(a)

7(M3)

9(a)

8(ε)

3(M2)

4->3->5->2->6->1->0
1->3->5->7->8->6->9->4->10->2->0

Marker Marker Based TransformationBased Transformation
 How How do Parse do Parse Trees changeTrees change??

23

S::= M1 U
U::= M2 U1 a
U::= M3 ε
M1::= ε{push 0;}
M2::= ε{push(top+1);}
M3::= ε{print(top);}

(k) A::=B1…Bn {α} Action(In,x)=R/k

x

Bi e i loro attributi Bi.s sono
stati calcolati dalle preceden-
ti riduzioni (figli - depth first)

A.s=[α] e’ calcolato: puo’ dipendere
 solo da sintetizzati di Bi (figli di A)
tutti sullo stack

Goto(Jm,A)=I

In Bn Bn.s

I1 B1 B1.s
Jm Am Am.s

….

x

I A A.s
Jm Am Am.s

input

Stack di
controllo

stato

simbolo

attributo

Prima della
riduzione

dopo la
riduzione

produzione Tabelle riconoscitore LR

Marker Marker Based TransformationBased Transformation
 Attribute Evaluation Attribute Evaluation -1-1

24

S::= M1 U
U::= M2 U1 a
U::= M3 ε
M1::= ε{push 0;}
M2::= ε{push(top+1);}
M3::= ε{print(top);}

aa

I4 M3
I3 M2 2
I2 M2 1
I1 M1 0
Jm Am Am.s

2

↑

In this case, evaluation cannot behave in this way
because the new grammar is not more LR(1)

Marker Marker Based TransformationBased Transformation
 Attribute Evaluation Attribute Evaluation -2-2

This is why Factorization may be considered a
better alternative to the use of Markers.

25

•• Top-downTop-down:
– Translation Invariants
– Translation of actions, α, containing attributes in actions on I/S stack positions

•• BottomBottom-up-up:
– Translation Invariants
– Translation of actions, α, containing attributes in actions on C stack positions

matters not covered

Analisi Statica

Oblivious Evaluators
Implementation

