Let mk-tree be an arity-variant procedure that applies to a label and to n trees and results the tree rooted
on a node having, as label, the first argument, and, as sons, the n trees, in the order of appearance from left.
Say: 1) the type of the attributes; 2) the family L,,;,; 3) the value of each attribute relating to 2+3.

E::FE’ [0
F::=HF" 13!

En=+E | [2lg
Fu=*F 4| Dlg

H::=num ©| 71 (E)

0.t=E-1.t,2.t

1.t=F F 1.d=0.d+1
4t=...

vV

3t=... H 3.d=...

E 0.d=1

2t=E" FE’

E 4.d=...

2.d=0.d+1

E:=FE' [0] E.tree:= mk-tree('E', F.tree, E'.tree),
F.depth:=E.depth+1, E'.depth:=E.depth+1
E':=+E [1] E'.tree:= mk-tree('E'', mk-leaf('+'), E.tree),
+.depth:=E'.depth+1.E.depth:=E'.depth+1
Eeem E'.tree:= mk-tree('E'', mk-leaf('e"))
nEE 2] e.depth:=E'.depth+1
Fom HF' F.tree:= mk-tree('F', H.tree, F'.tree),
FE [3] | H.depth:=F.depth+1, F'.depth:=F.depth+1
Fu=*F [4] F'.tree:= mk-tree('F'', mk-leaf('*'), F.tree),
B * depth:=F'.depth+1, F.depth:=F'.depth+1
Fluse (s F'.tree:= mk-tree('F'', mk-leaf('e'"))
N 5] e.depth:=F'.depth+1
Hee= H.tree:= mk-tree('H', mk-leaf(num)),
s=num (6] num.depth:=H.depth+1
H::= () [7] H.tree:= mk-tree('H', mk-leaf('('), E.tree, mk-leaf(')")),

E.depth:= H.depth+1, (.depth:=H.depth+1,
).depth:=H.depth+1,

0.t=E-1.t,2.t E 0.d=L

1t=F F 1.d=0.d+1 2t=E° E’ 2.d=0.d+1

P\
4t=... E 4d=...
vy

3t=... H 3.d=...

Node 1 occurs, in the tree, in 2 different way:
e left side grammatical of

E:=FE'
* right side grammatical of
F::=HF'

Hence, attributes of node 1 can be defined in actions of:
2 different attribute productions:
This is the case of our grammar:
F.depth is defined in E::= F E'
F.tree is defined in F::= H I’
Attribute:
F.depth is called Inherited
F.tree is called Syntesized

Let GA = {3,V,s,PA{a }} be an attribute grammar.
Let p=B:=f {a}& PA.

Let X.a be an attribute occurring in {a}. Then
X.a 1s a synthesized attribute if and only if one the two:
e 1 X.a=e €{0a} and X=B
= X;.a;=¢; E{a} and X.a EVar(e;;) and X ESym(f})

where: Sym(p) is the set of grammatical symbols in f3
Var(e) is the set of attributes occurring in e

0.t=E-1.t2.t E 0.d=L E::=F E’ { E.tree:= mk-tree('E', F.tree, E'.tree)...}

A Pragmatic View:
 Attribute of the node only depends
from attributes of the sons
* It expresses Compositional Properties

1t=F F 1.d=0.d+1 2t=E° E’ 2.d=0.d+1

Let GA = {3,V,s,PA{a}} be an attribute grammar.

Let X be a grammatical. Then
A-Syn(X) is the set of all Syntesized attribute of X in GA

Let GA = {3,V,s,PA{a}} be an attribute grammar.
Let p=B:=f {a}& PA.

Let X.a be an attribute occurring in {a.}. Then

X.a 1s an inherited attribute if and only if one the two
e 1 X.a=e €{a} and X=Sym(p)
* 1 X,.a;=¢;; €{0} and X.a EVar(e;) and X=B

where: Sym(p) is the set of grammatical symbols in f3
Var(e) is the set of attributes occurring in e

0.t=E-1.t2t E 0.d=1 E::=F E’ {F.depth:=E.depth+1)...}

A Pragmatic View:
 Attribute of the node only depends
from attributes of the context (father, brothers)

1t=F F 1.d=0.d+1 2.t=E’ E’ 2.d=0.d+1 * It expresses Contextual Properties

Let GA = {3,V,s,PA{a}} be an attribute grammar.

Let X be a grammatical. Then
A-Inh(X) is the set of all Inherited attribute of X in GA

Power: Context Sensitives and Attribute Grammars
Attribute Evaluation: Three Execution Methods

Oblivious and L-Attributed Grammars
Bottom-up Executors for S-Attributed

Top-down Executors for L-Attributed
Bottom-up: Transformations for L-Attributed

because of the combination with a meta that can be a programming language

L,={u"v"z" | n=0}

Consider the language L, on the S-—A E

right side. L,& CF, and a Context As=uAvBle

Sensitive grammar for L, 1s shown. Bv:=vB
BE:=z
Bz:=zz

* Such a grammar is difficult to write and even worse to analyze
* Context Sensitive Analyzers are complicated to build and impr-

actical to use
e Attribute Grammars can be profitably used

IO

* Select a language L,&€ LL(1) including the language we are interested in:
iyt Ly
* Let G be a LL(1) grammar for L,

SRS
Si=uozl Y
Y=y Ve
e Extend G into an Attribute Grammar that computes an attribute of S’ to
true if and only 1f the analyzed string belongs to L(G), hence has form
urvzk and n=m=Kk.
574:= 5{S.r=(S.u==S.v)&(S.u==S.z)}
5= u S, 2{Su=S.u+1; S,.v=S,.v; S,.z=S,.2+1}
S2:= YV {S.u=0; S.v=V.v; S.z=0}
V=7 YV, AV v=V,v+1}
V2= 2 {V.v=0}

1) Parse Tree:

e Construct the Parse Tree, T

* Construct the Dependency Graph, T ,of T

* Find, if any, a Topological Sort M , for T,

* Visit T, according to M 1, and Execute the
actions associate to the nodes

Apl Ap2 A.p, A.pl, C.rl Node ActionAttribute
B.ql, A.p2 C C.rl
A.p3, A A.p2-A.p-Apl
/ \\ B.q2 A Ap3
C 4 - C.r2 g B.ql - B.q2

C2

T, Visit

-Only for Multi-Pass Parser/Compiler

-Method applies at Compile Time

2) Rule-based:

 For each production:
* Analyze the meaning of the actions occurring in it
* State a proper execution order for the actions
e Combine such an order with the Parse-Tree constructor:
* Only one Code for Parse-Tree construction and Action execution
e Versus Distinct, Correlated, Codes

Ad Hoc Construction: The resulting code is hard to modify

- Also for one-Pass Parser/Compiler
- Method applies at Compile Construction Time

3) Oblivious:

* The execution order for the actions is established according to:
e same criteria for all propductions
e criteria that ignore the meaning of the actions

* but are adequate for executing actions in the correct way
e Action Execution i1s combined with Parsing:
* Top-Down Executors
* Bottom-Up Executors
e Parser Generators are extended to Attribute Grammar Evaluators

- Only for one-Pass Parser/Compiler
- Method applies at Compile Constrution Time 10

Parser Generators as Attribute Grammar Oblivious Evaluators

 How can Parsing and Action Evaluation be combined ?
- At each derivation/reduction, the production actions are evaluated

 When actions are evaluated in this way, what part of the Parse-Tree

has already been traversed and then, known to the actions?
- The nodes of a Depth-First visit of the Parse-Tree up to the
current input:
+ Top-Down: Preorder Depth First
+ Bottom-up: Postorder Depth First

e Parser Generators can be extended into Oblivious Evaluators of a
attribute grammar G 1if:
Depth-First visit is a Topological Sort of the Dependency Graph of G

J"I

L-Attributed Grammars 1s a class of Attributed Grammars (or SDD)

that has Depth-First as a Topological Sort of the Dependency Graph
of the Parse-Tree attributes of the grammar.

Let GA = {3,V,s,PA{a }} be an attribute grammar.
Let p=B:=B,...B_{a}€ PA.
GA is L-attributed if and only if:
VX.. a;=e; E{a} for X; € Sym(B,...B):
it X,.a, € Var(e,) then:
elther X. _Bhl X, =B,, and 1<h, <h.=<n

- or X,=B and a, €A-Inh(B)

- S-attributed Grammars are containing only synthesized attributes
- S-attributed are L-attributed.

Theorem. If G has Top-Down/Bottom-up Parser and G4 is L-attribued

then GA has Top-Down/Bottom-up oblivious evaluator

Extend the values of the push-down automata, LR control stack:
* Associate to each grammatical symbol B:
* the syntesized attributes or none (if it has no attribute)

* the transtion state of LR analysis

1 I B Bs
B —» B.s

® At each reduction with handle A::=B1...Bn {a} compute all the actions in {ca.}.
- Let A.a=e, be one of them.
If e, contains occurrences of attributes of the grammatical B, then:

- access (n-1)-th position, below the top of the stack, and
- select the value I; B, [v;] (Where [v;]=v;;...v;,) and find the correct v;;

- Let [v]=v,...v_, be the values resulting for the attributes a,...a_ of A.

® Reduce and insert L A [v], where L is the transition state of LR analysis. 13

production

LR Table

(k) A::=B1...Bn {a}

Action(I_,x)=R/k

Goto(J,,A)=I

:LIH Bn

Bn.s

1Bl

Bl.s

AN

Am

LI

Am.s

et
>

Each Bi and its attributes Bi.s are computed by
the previvious reductions (sons - depth first)

e

A.s

Am.s

A.s=a has been just computed: It can only depend 4
from A-Syn(Bi) (A’s sons) that are in the stack

Translation Schemes = Grammars with Productions where actions
and grammatical symbols are mixed

A::={p1}B1...{Pk}Bk{a}
in a way that:

e A-Inh(B1) are defined only in actions {pi} that precede Bi (for ach 1)
e A-Syn(A) are defined in {o}

If G 1s L-attributed, its TS has actions that can use only, attributes
of symbols that precede the actions.

T 0~DJ/‘/r| VA

lr'[J/‘/ (lJ

e Transform L-attributed in Translation Scheme
e Pair the LL control stack, C, with Bi_ LB~
* one data stack for synthesized values, S,
* one data stack for inherited values, 1.
» Extend C to contain actions:
At each derivation with A::={f1}B1...{fk}Bk{a},
e {f1}BI1...{fk}Bk{a}
* (Let BO=A and 3, ,,=0)
When an action Bi (1<i<k+1) is selected from the top of C
e Action is evaluated:
* by using the evaluator of Meta, and
* by replacing attributes of:
* Bj (j<i1) with the values extracted, from I or S, at the (i-j-1)-th position from top
* A - as above, by letting: BO=A and B, , ;=0
by putting its result on:
e the top of 1, if action is Pi
* k-th position below top of S, if action is a

—» B.s B

(k) A::={p1}B1...{pn} Bn {a}

A

%

A.i comes in from the previous deriva-

tion that involved its brothers at left Stack C Stack 1/S

Bl
Bn
Bn Bl.1 -
o Ail| -

17
B1.i=1 can contain only inherithed of A

B2
B2

Bl.i|Bls

Al | -

Bn.1

Bn.s

Bl.i

Bl.s

Transform: (n) Au={p1}B1l...{pk}Bk{a}

Translation 1n
Descendant

Scheme AII=M Bl... Mnk Bk{ [a]}
M, = ¢ {[B1]}

Translation
Ascendant k: =& {[Bk]}

Scheme

Inner Actions of the descendant schemes are transformed into final actions of e-productions
that are introduced by the Markers.

One Marker uniquely identifies the position, inside a production, and allows to handle:
inherited attributes of a symbol as synthesized attributes of a marker 19

Transform: (n) Au={p1}B1...{fk}Bk{a}

m
Scheme
A=A, Bk{[a]}
Api= Ay Bk-1{[BK]}

Ansii= A, BI{(B2])

Api=e{[Bl]}

Inner Actions of the descendant schemes are transformed into final actions of productions
of the new added grammaticals that are as many as the positions inside the production.

The new symbol Anj uniquely identifies the j-th position, inside n-th production of A, and allows to handle:
inherited attributes of a symbol as synthesized attributes of new symbol

S::=U {U.n=0;} S::={U.n=0;} U
U:=U;a {U;n=Un+l;} U:={U,.n=U.n+1;} U, a
U::=¢ {print(U.n);} U::= {print(U.n); }¢

Si=M1U S:=M1U
U:=M2U,a U:=M2U, a

Ui=M3 e U:=M3¢

MI::= e{push 0:} MI1::= ¢{U.n=0;}
M2::= e{push(top+1);} M2::= £{U,.n=U.n+1;}
M3::= g{print(top); } M3::= e{print(U.n);}

21

U:=M2U,a
S::=U {U.n=0;} U:=M3¢
U:=U,a {U;.n=Un+l;} M1::= e{push 0;}
U::=¢ {print(U.n);} M2::= e{push(top+1);}
M3::= ¢{print(top);}

0(S)
0(S)

B e
/ \4 I(My&

2(U) 6(a)
How does depth-first tree visit change 3M2) 4(U) 10(a)

3(U) 5S(a) (postorder)

SM2)) 9@

4%8) /l
7M3) 8(¢)
22

4->3->5->2->6->1->0
1->3->5->7->8->6->9->4->10->2->0

produzione

Tabelle riconoscitore LR

(k) A::=Bl1...Bn {a}

Action(I,x)=R/k

Goto(J,,A)=I

IS

|41, Bn | Bns

1[B1 |Bls
J. [Am Am.s

S:=M1U
U:=M2U,a
U:=M3¢

M1::= e{push 0;}
M2::= ¢{push(top+1);}
M3::= ¢{print(top);}

23

I, M3
I, M2
I, M2
I, Ml
J,Am A

BO»—*I\J

M1::= e{push 0;}
M2::= e{push(top+1);}
M3::= g{print(top);}

In this case, evaluation cannot behave in this way
because the new grammar is not more LR(1)

This is why Factorization may be considered a

better alternative to the use of Markers. o

e Top-down:

— Translation Invariants
— Translation of actions, o, containing attributes in actions on I/S stack positions

 Bottom-up:

— Translation Invariants
— Translation of actions, ., containing attributes in actions on C stack positions
matters not covered

Analisi Statica

25

