Apply Attribute Grammars to Parse Trees: An Exercise

Let $m k$-tree be an arity-variant procedure that applies to a label and to n trees and results the tree rooted on a node having, as label, the first argument, and, as sons, the n trees, in the order of appearance from left. Say: 1) the type of the attributes; 2) the family $\mathrm{L}_{\{\mathrm{ai}\}} ; 3$) the value of each attribute relating to $2+3$.

$\mathbf{E}:=\mathbf{F} \mathbf{E}^{\prime}$ [0]	E.tree:= mk-tree('E', F.tree, E'.tree), F.depth:=E.depth+1, E'.depth:=E.depth+1
$\mathrm{E}^{\prime}::=+\mathrm{E}$ [1]	E'.tree:= mk-tree('E'', mk-leaf('+'), E.tree), +.depth: $=E^{\prime}$. depth +1 ,E.depth: $=E^{\prime}$. depth +1
$\mathrm{E}^{\prime}::=\varepsilon$ [2]	$\begin{aligned} & \left.\left.\mathrm{E}^{\prime} . t r e e:=\text { mk-tree('E', mk-leaf(' } \varepsilon^{\prime}\right)\right) \\ & \varepsilon . d e p t h:=\mathrm{E}^{\prime} . \text { depth+1 } \end{aligned}$
$\mathrm{F}:$:= H F ${ }^{\prime}$ [3]	F.tree:= mk-tree('F', H.tree, \mathbf{F}^{\prime}.tree), H.depth:=F.depth+1, F'.depth:=F.depth+1
$\mathrm{F}^{\prime}::=$ * F [4]	$\begin{aligned} & \mathbf{F}^{\prime} . \text { tree }:=\text { mk-tree('F'', mk-leaf('*'), F.tree), } \\ & \text { *.depth:=F'.depth+1, F.depth:=F'.depth+1 } \end{aligned}$
$\mathrm{F}^{\prime}::=\mathrm{\varepsilon}$ [5]	$\begin{aligned} & \left.\left.\mathrm{F}^{\prime} . t r e e:=\text { mk-tree('F'', mk-leaf(' } \varepsilon^{\prime}\right)\right) \\ & \varepsilon . d e p t h:=\mathrm{F}^{\prime} . \text { depth+1 } \end{aligned}$
H::= num [6]	H.tree:= mk-tree('H', mk-leaf(num)), num.depth:=H.depth+1
$\mathrm{H}::=(\mathrm{E}) \quad$ [7]	```H.tree:= mk-tree('H', mk-leaf('('), E.tree, mk-leaf(')')), E.depth:= H.depth+1, (.depth:=H.depth+1,).depth:=H.depth+1,```

Two Kinds of Attributes: Syntesized - Inherited

Node 1 occurs, in the tree, in 2 different way:

- left side grammatical of

E: : = F E'

- right side grammatical of

F:: = H F'
Hence, attributes of node 1 can be defined in actions of:
2 different attribute productions:
This is the case of our grammar:
F.depth is defined in $\mathrm{E}::=\mathrm{F} \mathrm{E}^{\prime}$
F.tree is defined in $\mathrm{F}::=\mathrm{H}$ F ,

Attribute:
F.depth is called Inherited
F.tree is called Syntesized

Syntesized Attributes

Let $\mathrm{G}^{\mathrm{A}} \equiv\left\{\sum, \mathrm{V}, \mathrm{s}, \mathrm{P}^{\mathrm{A}},\left\{\mathrm{a}_{\mathrm{i}}\right\}\right\}$ be an attribute grammar.
Let $\mathrm{p} \equiv \mathrm{B}:=\beta\{\alpha\} \in \mathrm{P}^{\mathrm{A}}$.
Let X.a be an attribute occurring in $\{\alpha\}$. Then
X.a is a synthesized attribute if and only if one the two:

- $\exists \mathrm{X} . \mathrm{a}=\mathrm{e} \in\{\alpha\}$ and $\mathrm{X} \equiv \mathrm{B}$
- $\exists X_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{ij}}=\mathrm{e}_{\mathrm{ij}} \in\{\alpha\}$ and $\mathrm{X} . \mathrm{a} \in \operatorname{Var}\left(\mathrm{e}_{\mathrm{ij}}\right)$ and $\mathrm{X} \in \operatorname{Sym}(\beta)$
where: $\operatorname{Sym}(\beta)$ is the set of grammatical symbols in β $\operatorname{Var}(\mathrm{e})$ is the set of attributes occurring in e

E::= F E' \{ E.tree:= mk-tree('E', F.tree, E'.tree)...\}

A Pragmatic View:

- Attribute of the node only depends from attributes of the sons
- It expresses Compositional Properties

Let $\mathrm{G}^{\mathrm{A}} \equiv\left\{\Sigma, \mathrm{V}, \mathrm{s}, \mathrm{P}^{\mathrm{A}},\left\{\mathrm{a}_{\mathrm{i}}\right\}\right\}$ be an attribute grammar.
Let X be a grammatical. Then
$\mathrm{A}-\operatorname{Syn}(\mathrm{X})$ is the set of all Syntesized attribute of X in G^{A}

Inherited Attributes

$$
\text { Let } \mathrm{G}^{\mathrm{A}} \equiv\left\{\Sigma, \mathrm{~V}, \mathrm{~s}, \mathrm{P}^{\mathrm{A}},\left\{\mathrm{a}_{\mathrm{i}}\right\}\right\} \text { be an attribute grammar. }
$$

Let $\mathrm{p} \equiv \mathrm{B}:=\beta\{\alpha\} \in \mathrm{P}^{\mathrm{A}}$.
Let X.a be an attribute occurring in $\{\alpha\}$. Then
X. a is an inherited attribute if and only if one the two

- $\exists \mathrm{X} . \mathrm{a}=\mathrm{e} \in\{\alpha\}$ and $X \equiv \operatorname{Sym}(\beta)$
- $\exists X_{\mathrm{i}} \cdot \mathrm{a}_{\mathrm{ij}}=\mathrm{e}_{\mathrm{ij}} \in\{\alpha\}$ and $\mathrm{X} . \mathrm{a} \in \operatorname{Var}\left(\mathrm{e}_{\mathrm{ij}}\right)$ and $\mathrm{X} \equiv \mathrm{B}$
where: $\operatorname{Sym}(\beta)$ is the set of grammatical symbols in β $\operatorname{Var}(\mathrm{e})$ is the set of attributes occurring in e

E::= F E' $\{$ F.depth:=E.depth +1)... $\}$
A Pragmatic View:

- Attribute of the node only depends from attributes of the context (father, brothers)
- It expresses Contextual Properties

Let $\mathrm{G}^{\mathrm{A}} \equiv\left\{\Sigma, \mathrm{V}, \mathrm{s}, \mathrm{P}^{\mathrm{A}},\left\{\mathrm{a}_{\mathrm{i}}\right\}\right\}$ be an attribute grammar.
Let X be a grammatical. Then
$\mathrm{A}-\operatorname{Inh}(\mathrm{X})$ is the set of all Inherited attribute of X in G^{A}

Applications of the Attribute Grammars

- Power: Context Sensitives and Attribute Grammars
- Attribute Evaluation: Three Execution Methods
- Oblivious and L-Attributed Grammars
- Bottom-up Executors for S-Attributed
- Top-down Executors for L-Attributed
- Bottom-up: Transformations for L-Attributed

Attribute grammars are greatly powerful

because of the combination with a meta that can be a programming language

Consider the language L_{2} on the right side. $\mathrm{L}_{2} \notin \mathrm{CF}$, and a Context
Sensitive grammar for L_{2} is shown.

$$
L_{2}=\left\{u^{n} v^{n} z^{n} \mid n \geq 0\right\}
$$

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{A} \mathrm{E} \\
& \mathrm{~A}::=\mathrm{u} \mathrm{~A} \mathrm{v} \mathrm{~B} \mathrm{le} \\
& \text { B v::= v B } \\
& \text { B E }::=\mathrm{z} \\
& \text { B z::= z z }
\end{aligned}
$$

- Such a grammar is difficult to write and even worse to analyze
- Context Sensitive Analyzers are complicated to build and impractical to use
- Attribute Grammars can be profitably used

Using an LL Attribute Grammar for Analyzing $u^{n} v^{n} z^{n}$

－Select a language $\mathrm{L}_{1} \in \operatorname{LL}(1)$ including the language we are interested in：

$$
\|^{\perp \Perp} \gamma^{\Perp Z^{\perp I}} \subseteq L_{1}
$$

－Let G be a LL（1）grammar for L_{1}

$$
\begin{aligned}
& \text { S": } \because=\text { S } \\
& \text { S゙っ= IISuly }
\end{aligned}
$$

－Extend G into an Attribute Grammar that computes an attribute of S^{\prime} to true if and only if the analyzed string belongs to $L(G)$ ，hence has form $\mathrm{u}^{\mathrm{n}} \mathrm{v}^{\mathrm{m}} \mathrm{z}^{\mathrm{k}}$ and $\mathrm{n}=\mathrm{m}=\mathrm{k}$ ．

$$
\begin{aligned}
& \left.S^{\prime \prime},:=S \text { SS.r=(S.u==S.v)\&(S.u==S.z) }\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \text { St: = Y \{S.u=0; S.v=V.v; S.z=0\} } \\
& \left.\mathrm{V}_{1}\right\lrcorner=\mathrm{y}_{2}\left\{\mathbf{V}_{\mathbf{1}} \cdot \mathbf{v}=\mathbf{V}_{\mathbf{2}} \cdot \mathbf{v}+\mathbf{1}\right\} \\
& \mathrm{Y}_{\mathrm{s}:}=\text { e }\{\mathbf{V} . \mathbf{v}=\mathbf{0}\}
\end{aligned}
$$

Attribute Evaluation

Three different evaluation tools

1) Parse Tree:

- Construct the Parse Tree, T
- Construct the Dependency Graph, T_{d} of T
- Find, if any, a Topological Sort M_{Td} for T_{d}
- Visit T_{d} according to M_{Td} and Execute the actions associate to the nodes

A.p, A.p1, C.r1
B.q1, A.p2
A.p3,
B.q2
C.r2
$\quad \mathrm{M}_{\mathrm{Td}}$

-Only for Multi-Pass Parser/Compiler
-Method applies at Compile Time

Attribute Evaluation

Three different evaluation tools - 2

2) Rule-based:

- For each production:
- Analyze the meaning of the actions occurring in it
- State a proper execution order for the actions
- Combine such an order with the Parse-Tree constructor:
- Only one Code for Parse-Tree construction and Action execution
- Versus Distinct, Correlated, Codes

Ad Hoc Construction: The resulting code is hard to modify

- Also for one-Pass Parser/Compiler
- Method applies at Compile Construction Time

Attribute Evaluation

Three different evaluation tools - 3

3) Oblivious:

- The execution order for the actions is established according to:
- same criteria for all propductions
- criteria that ignore the meaning of the actions
- but are adequate for executing actions in the correct way
- Action Execution is combined with Parsing:
- Top-Down Executors
- Bottom-Up Executors
- Parser Generators are extended to Attribute Grammar Evaluators
- Only for one-Pass Parser/Compiler
- Method applies at Compile Constrution Time

Attribute Evaluation

Parser Generators as Attribute Grammar Oblivious Evaluators

- How can Parsing and Action Evaluation be combined ?
- At each derivation/reduction, the production actions are evaluated
- When actions are evaluated in this way, what part of the Parse-Tree has already been traversed and then, known to the actions?
- The nodes of a Depth-First visit of the Parse-Tree up to the current input:

\author{

+ Top-Down: Preorder Depth First
 + Bottom-up: Postorder Depth First
}
- Parser Generators can be extended into Oblivious Evaluators of a attribute grammar G if:
Depth-First visit is a Topological Sort of the Dependency Graph of G

L-Attributed Grammars

L-Attributed Grammars is a class of Attributed Grammars (or SDD) that has Depth-First as a Topological Sort of the Dependency Graph of the Parse-Tree attributes of the grammar.

$$
\begin{aligned}
& \text { Let } \mathrm{G}^{\mathrm{A}} \equiv\left\{\Sigma, \mathrm{~V}, \mathrm{~s}, \mathrm{PA},\left\{\mathrm{a}_{\mathrm{i}}\right\}\right\} \text { be an attribute grammar. } \\
& \text { Let } \mathrm{p} \equiv \mathrm{~B}:=\mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{n}}\{\alpha\} \in \mathrm{P}^{\mathrm{A}} \text {. } \\
& \mathrm{G}^{\mathrm{A}} \text { is } \mathrm{L}-\text { attributed if and only if: } \\
& \forall \mathrm{X}_{\mathrm{i}} \mathrm{a}_{\mathrm{ij}}=\mathrm{e}_{\mathrm{ij}} \in\{\alpha\} \text { for } \mathrm{X}_{\mathrm{i}} \in \operatorname{Sym}\left(\mathrm{~B}_{1} \ldots \mathrm{~B}_{\mathrm{n}}\right) \text { : } \\
& \text { if } \mathrm{X}_{\mathrm{k}} \cdot \mathrm{ai}_{\mathrm{ik}} \in \operatorname{Var}\left(\mathrm{e}_{\mathrm{ij}}\right) \text { then: } \\
& \quad-\text { either } \mathrm{X}_{\mathrm{i}}=\mathrm{B}_{\mathrm{h},} \mathrm{X}_{\mathrm{k}} \equiv \mathrm{~B}_{\mathrm{hk}} \text { and } 1 \leq \mathrm{h}_{\mathrm{k}} \leq \mathrm{h}_{\mathrm{i}} \leq \mathrm{n} \\
& \quad-\text { or } \mathrm{X}_{\mathrm{k}}=\mathrm{B} \text { and } \mathrm{a}_{\mathrm{ik}} \in \mathrm{~A}-\operatorname{Inh}(\mathrm{B})
\end{aligned}
$$

- S-attributed Grammars are containing only synthesized attributes
- S-attributed are L-attributed.

Theorem. If G has Top-Down/Bottom-up Parser and G^{A} is L-attribued then \mathbf{G}^{A} has Top-Down/Bottom-up oblivious evaluator

Bottom-Up Evaluator for S-attributed How do it by extending LR Parsers

Extend the values of the push-down automata, LR control stack:

- Associate to each grammatical symbol B:
- the syntesized attributes or none (if it has no attribute)
- the transtion state of LR analysis

- At each reduction with handle $\mathrm{A}::=\mathrm{B} 1 \ldots \mathrm{Bn}\{\alpha\}$ compute all the actions in $\{\alpha\}$.
- Let A. $\mathrm{a}_{\mathrm{i}}=\mathrm{e}_{\mathrm{i}}$ be one of them.

If e_{i} contains occurrences of attributes of the grammatical B_{i} then:

- access ($\mathrm{n}-\mathrm{i}$)-th position, below the top of the stack, and
- select the value $I_{i} B_{i}\left[v_{i}\right]$ (where $\left[v_{i}\right] \equiv v_{i 1} \ldots v_{i n}$) and find the correct $v_{i j}$
- Let $[\mathrm{v}]=\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{m}}$ be the values resulting for the attributes $\mathrm{a}_{1} \ldots \mathrm{a}_{\mathrm{m}}$ of A .
- Reduce and insert $I_{j} A[v]$, where I_{j} is the transition state of $L R$ analysis.

How do it: LR Control Stack

production
(k) $\mathrm{A}::=\mathrm{B} 1 \ldots \mathrm{Bn}\{\alpha\}$

LR Table
$\operatorname{Action}\left(\mathrm{I}_{\mathrm{n}}, \mathrm{x}\right)=\mathrm{R} / \mathrm{k} \quad \operatorname{Goto}\left(\mathrm{J}_{\mathrm{m}}, \mathrm{A}\right)=\mathrm{I}$

Each $\mathrm{B} i$ and its attributes $\mathrm{B} i$.s are computed by the previvious reductions (sons - depth first)
A. $s=\alpha$ has been just computed: It can only depend 4 from $\mathrm{A}-\mathrm{Syn}(\mathrm{B} i)$ (A's sons) that are in the stack

Top-Down Evaluators for L-Attributed From L-Attributed to Translation Schemes

Translation Schemes = Grammars with Productions where actions and grammatical symbols are mixed

$$
\mathrm{A}::=\{\beta 1\} \mathrm{B} 1 \ldots\{\beta \mathrm{k}\} \mathrm{Bk}\{\alpha\}
$$

in a way that:

- A-Inh(Bi) are defined only in actions $\{\beta \mathrm{i}\}$ that precede $\mathrm{Bi}($ for ach i$)$ - A-Syn(A) are defined in $\{\alpha\}$

If G is L-attributed, its TS has actions that can use only, attributes of symbols that precede the actions.

Top-Down Evaluator for L-attributed How do it by extending LL Parsers

- Transform L-attributed in Translation Scheme
- Pair the LL control stack, C, with
- one data stack for synthesized values, \mathbf{S},
- one data stack for inherited values, I.
- Extend C to contain actions:
- At each derivation with $A::=\{\beta 1\} B 1 \ldots\{\beta k\} B k\{\alpha\}$,
- $\{\beta 1\}$ B1... $\{\beta \mathrm{k}\} \mathrm{Bk}\{\alpha\}$

- (Let $\mathrm{B} 0 \equiv \mathrm{~A}$ and $\left.\beta_{\mathrm{k}+1} \equiv \alpha\right)$

When an action $\beta \mathbf{i}(1 \leq i \leq k+1)$ is selected from the top of C

- Action is evaluated:
- by using the evaluator of Meta, and
- by replacing attributes of:
- $\mathbf{B j}(\mathrm{j}<\mathrm{i})$ with the values extracted, from I or S , at the $(\mathrm{i}-\mathrm{j}-1)$-th position from top
- A - as above, by letting: $\mathrm{B} 0 \equiv \mathrm{~A}$ and $\beta_{\mathrm{k}+1} \equiv \alpha$
- by putting its result on:
- the top of \mathbf{I}, if action is $\beta \mathrm{i}$
- k-th position below top of S, if action is α

How do it: LL Control Stack - 1

(k) $\mathrm{A}:=\{\beta 1\} \mathrm{B} 1 \ldots\{\beta \mathrm{n}\} \mathrm{Bn}\{\alpha\}$
$\mathrm{M}(\mathrm{A}, \mathrm{y})=\mathrm{k}$

How do it: LL Control Stack - 2

L-attributed Bottom-up Transformations: Markers

	Transform: (n) A:: $=\{\beta 1\} \mathrm{B} 1 \ldots\{\beta \mathrm{k}\} \mathrm{Bk}\{\alpha\}$
Translation	in
Descendant Scheme	A: $=\mathrm{M}_{\mathrm{nl}} \mathrm{B1} 1 . . \mathrm{M}_{\mathrm{nk}} \operatorname{Bk}\{[\alpha]\}$
Translation Ascendant	$\mathrm{M}_{\mathrm{nk}}::=\varepsilon\{[\beta \mathrm{k}]\}$

Inner Actions of the descendant schemes are transformed into final actions of ε-productions that are introduced by the Markers.

One Marker uniquely identifies the position, inside a production, and allows to handle:

L-attributed Bottom-up Transformations: Fiactorization

Inner Actions of the descendant schemes are transformed into final actions of productions of the new added grammaticals that are as many as the positions inside the production.

The new symbol Anj uniquely identifies the \mathbf{j}-th position, inside n -th production of A , and allows to handle: inherited attributes of a symbol as synthesized attributes of new symbol

Marker Based Transformation How do actions have to be changed?

Marker Based Transformation How do Parse Trees change?

$\mathrm{S}::=\mathrm{U}$	$\{\mathrm{U} . \mathrm{n}=0 ;\}$
$\mathrm{U}::=\mathrm{U}_{1} \mathrm{a}$	$\left\{\mathrm{U}_{1} \cdot \mathrm{n}=\mathrm{U} . \mathrm{n}+1 ;\right\}$
$\mathrm{U}::=\varepsilon$	$\{\operatorname{print}(\mathrm{U} . \mathrm{n}) ;\}$

```
S::= M1 U
U::= M2 U1 a
U::= M3 \varepsilon
M1::= \varepsilon{push 0;}
M2::= \varepsilon{push(top+1);}
M3::= \varepsilon {print(top);}
```


How does depth-first tree visit change (postorder)

Marker Based Transformation Attribute Evaluation - 1

Marker Based Transformation Attribute Evaluation -2

Oblivious Evaluators Implementation

- Top-down:
- Translation Invariants
- Translation of actions, α, containing attributes in actions on I/S stack positions
- Bottom-up:
- Translation Invariants
- Translation of actions, α, containing attributes in actions on C stack positions matters not covered

