SLR(1) Parsing Properties of Applicability

$$
\begin{aligned}
& \text { Prop1: (No shift-reduce) } \\
& \left(\forall I_{k} \in \operatorname{Coll}(0)\right),\left(\forall A z ;=0, z y, B z ;=\beta, \in I_{k}\right) \\
& \text { aff follow(B) }
\end{aligned}
$$

Prop2: (No reduce-reduce)

$$
\begin{aligned}
& \left.\left(\forall I_{k} \in \operatorname{Coll}(0)\right) \text {), (} \forall A: s=C \alpha_{n}, B: s=\beta, E_{I_{k}}\right) \\
& \text { follow }(A) \text { fiollow }(B)=\{ \}
\end{aligned}
$$

Theorem. Let \mathbf{G} be a grammar.
 - GESLR(1) if and only if both Prop1 and Prop2 hold.
 - G has shift-reduce, 1 symbol of lookahead, SLR parser if and only if both Prop1 and Prop2 hold.

SLR Concluding Remarks

1. In what sense, the analyzer "bottom-up", is not predictive?

Bottom-up decides the derivation on the basis of the maximum VP to the handle and this VP entirely, includes the string to derive.
2. Let G be a SLR(1) grammar.

- Can contain its ACTION more than one action per entry ?
- Can contain its GOTO more than one state for a same entry ?

3. What means that $\mathrm{G} \in \operatorname{SLR}(1)$ has Table:

ACTION such that: for each I, for each pair $\mathrm{a} \neq \mathrm{b}$, ACTION $(\mathrm{I}, \mathrm{a})=\mathrm{ACTION}(\mathrm{I}, \mathrm{b})$ when ACTION $(\mathrm{I}, \mathrm{a}) \neq \perp \neq \operatorname{ACTION}(\mathrm{I}, \mathrm{b})$?

To answer 3, let us consider the $\mathbf{S L R}(\mathbf{0})$ grammar below:

```
E::= E+T I T
T::= num
```


SLR Concluding Remarks - 2

4. Is $G \in \operatorname{SLR}(1)$ decidable for all Context Free grammars ?
5. Is $\mathbf{L} \in \operatorname{SLR}(1)$ decidable for all Context free languages ?

Recall that: $\mathbf{L} \in \operatorname{SLR}(1) \equiv \exists G \in L L(1): L(G)=\mathbf{L}$
6. Is the class of $\operatorname{SLR}(1)$ grammars including that of $\operatorname{LL}(1)$ grammars ?

To answer 6, let us consider the grammar below:

```
S::= Bc | b | A
A::= abb
B::=\varepsilon
```


SLR Concluding Remarks - 3

7. Is the class of SLR(1) languages, including that of $\operatorname{LL}(1)$ languages?

To answer 7, let us consider the role of non-terminal B:

```
S::= Bc | b | A
A::= aBb
B::=\varepsilon
```


8. Consider the condition C :

$\mathrm{C} \equiv \mathrm{A}::=\alpha . \in \mathrm{I}_{\mathrm{k}} \in \operatorname{Coll(0)}$ iff $\mathrm{A}::=\alpha$ is the handhe for all $\mathrm{a} \in$ follow(A).
C states a necessary and sufficient for reduction in SLR(1) Grammars.

- Is C again necessary and sufficient for reduction in botton-up, non SLR grammars ?
- Is C, only a necessary, condition for reduction in botton-up, non SLR grammars ?
- Is C, only a sufficient, condition for reduction in botton-up, non SLR grammars?

To answer 8, let us consider the grammar above and the existence of a rightmost derivation for string b. Such a derivation (in reverse order) is $b<=S$, but $\operatorname{SLR}(1)$ fails in doing it. Why?

Bottom-Up Analysis:

True and False Conflicts in SLR

$$
\mathrm{S}_{\mathrm{r}}=>^{*} \gamma \mathrm{~A} \beta_{\mathrm{r}}=>\gamma \alpha \beta
$$

$\mathrm{S}_{\mathrm{r}}=>^{*} \gamma \mathrm{~A} \beta$ is a Right Sentential Form $\gamma \mathrm{A} \beta_{\mathrm{r}}=>\gamma \alpha \beta$ is a Right Derivation

First(β)€follow(A)

$\mathrm{A}::=\alpha$ is the handle of $\gamma \alpha \beta$
$\operatorname{First}(\beta) \in \operatorname{Follow}(A)$ is only a necessary condition
Th. (necessary condition)
$\forall \mathrm{G}, \forall \gamma \alpha \in \mathrm{VP}_{\mathrm{G}}$
if $\mathrm{A}::=\alpha$ handle of $\gamma \alpha \beta$
then $-\operatorname{First}(\beta) \in \operatorname{follow}(A)$

- A-> α. is Valid Item

Bottom-Up Analysis: First $(\beta) \in$ Follow (A)

$$
\text { Let: } \mathrm{S}=>_{r}^{*} \gamma \alpha \beta \text { for }
$$

$\gamma \alpha \in$ viable prefix - is maximum $v p$
First $(\beta) \in$ follow(A)
A: $:=\alpha$. is Valid Item for $\gamma \alpha$

Can you conclude that
$\mathrm{A}::=\alpha$ is the handle of $\gamma \alpha \beta$?

First $(\beta) \in$ follow (A) is not a sufficient condition
Proposition. (Inclusion is not a sufficient condition)
$\forall \mathrm{G}, \forall \gamma \alpha \in \mathrm{VP}_{\mathrm{G}}$ with Valid Item $\mathrm{A}->\alpha$.
First $(\beta) \in$ follow (A) does not imply that $A::=\alpha$ is the handle of $\gamma \alpha \beta$

Use this grammar for a proof: (proof)
Let $\gamma \alpha \beta \equiv b$. Then, $S={ }^{*} b$
$\gamma \alpha=\lambda \in V P$ is maximum prefix; $\operatorname{First}(\beta) \in \operatorname{Follow}(B) ; B::=\varepsilon$ is valid for $\gamma \alpha \quad$ BUT $\quad B:=\varepsilon$ is not the handle of b

An Example

$$
\begin{aligned}
& \text { I0:Closure }\left(\left\{S^{\prime}::=. S\right\}\right)=\left\{S^{\prime}::=. S\right. \\
& S::=. A u, S::=. a v, A::=. a\} \\
& \mathrm{S}::=\mathrm{A} \text { u lave } \mathrm{I} 1: \operatorname{Goto}(\mathrm{I} 0, \mathrm{~S})=\left\{\mathrm{S}^{\prime}::=\mathrm{S} .\right\} \\
& \text { I2: } \operatorname{Goto}(\mathrm{I} 0, \mathrm{~A})=\{\mathrm{S}::=\mathrm{A} . \mathrm{u}\} \\
& \text { I3:Goto(IO,a) }=\{\mathrm{S}::=\mathrm{a} . \mathrm{v}, \mathrm{~A}::=\mathrm{a} .\} \\
& \text { I4:Goto(I2,u) }=\{\mathrm{S}::=\mathrm{Au} .\} \\
& \text { I5:Goto(I3,v) }=\{\mathrm{S}::=\mathrm{av} .\}
\end{aligned}
$$

```
I0:Closure (\{S'::=.S\}) =\{ \(S^{\prime}::=. S\)
    \(S::=. A u, S::=. a v, S::=. B v\),
    \(\mathrm{A}::=. \mathrm{a}, \mathrm{B}::=. \mathrm{xA}\}\)
\(\mathrm{I} 1: \operatorname{Goto}(\mathrm{I} 0, \mathrm{~S})=\left\{\mathrm{S}^{\prime}::=\mathrm{S}.\right\}\)
I2: \(\operatorname{Goto}(\mathrm{I} 0, \mathrm{~A})=\{\mathrm{S}::=\mathrm{A} . \mathrm{u}\}\)
I3: \(\operatorname{Goto}(\mathrm{I} 0, \mathrm{a})=\{\mathrm{S}::=\mathrm{a} . \mathrm{v}\)
    A::=a.\}
\(\ldots\). conflict: follow \((\mathrm{A})=\{\mathrm{u}, \mathrm{v}\}\)
\(S::=A u l a v \mid B v\)
\(\mathrm{A}::=\mathrm{a}\)
    \(B::=x\) A
```

$\mathrm{a} \in \mathrm{VP}_{\mathrm{G}}$ has $\mathrm{A}::=\mathrm{a}$. as Valid Item, $\mathrm{v} \in$ follow(A)

But $A::=a$ is not the handle of av

$$
\mathrm{S}=>_{\mathrm{r}}^{*} \mathrm{av}
$$

Inclusion is Only Necessary A proof

CounterExample. Consider: γ, α, β

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{u} A \text { a }|\mathrm{Ab}| \mathrm{a} a \\
& \mathrm{~A}::=\mathrm{a}
\end{aligned}
$$

$$
\gamma=\lambda, \alpha=a, \gamma \alpha=a \in V P
$$

A->a is the handle of "ab", with $\gamma \alpha=a$ and $\beta=b$. Hence, $\gamma \alpha=a$ is maximum prefix
But, $\mathbf{A}>\mathbf{a}$ is not the handle of "aa", with $\gamma \alpha=\mathbf{a}$ and $\beta=a$ even if $\gamma \alpha=\mathrm{a}$ is a maximum prefix and $\{\mathrm{a}, \mathrm{b}\} \in \operatorname{Follow}(\mathrm{A})$

LL(1) $\mathscr{C}_{6} \mathrm{SLR}(1)$ Another Example

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{uAa} \mid \mathrm{B} \\
& \mathrm{~B}::=\mathrm{Ab} \mid \mathrm{a} \\
& \mathrm{~A}::=\varepsilon
\end{aligned}
$$

$$
\mathrm{S}=>_{\mathrm{r}}^{*} \mathrm{a}
$$

$$
-\gamma=\lambda, \alpha=\lambda, \beta=a
$$

$-\lambda \in \mathrm{VP}$

- A->. valid item per $\boldsymbol{\lambda}$

No: non è maniglia $-\mathrm{S}=>_{\mathrm{r}} \mathrm{B}=>_{\mathrm{r}} \mathrm{a}$

A New Class of More Powerful Items

Let $\mathrm{X}::=\alpha \cdot \mathrm{A} \beta \in \mathrm{I}_{\mathrm{k}}$ and $\mathrm{A}::=\gamma$ be a grammar (canonical) production

Pairing each $\mathrm{LR}(0)$ item with the set U of all the symbols that can follow the handle string associated to the item

Canonical collection Coll(1)

 A New Class of Items that Remember Prefix Follows
Let $\mathbf{G}=<\mathbf{S}, \mathrm{V}, \Pi, \mathrm{s}>$

$S^{\prime}::=S / \$ \in I_{0}$ by definition

$$
\begin{gathered}
\operatorname{Clos}(\mathrm{I})={ }_{\text {min }} \mathrm{I} \cup \operatorname{Clos}\{\mathrm{~B}::=\gamma \gamma / \mathrm{U} \mid \mathrm{A}::=\alpha . \mathrm{B} \beta / \mathrm{V} \in \mathrm{Clos}(\mathrm{I}), \mathrm{B}::=\gamma \in \Pi, \\
\mathrm{U}=\{\operatorname{first}(\beta \mathrm{x}) \mid \mathrm{x} \in \mathrm{~V}\}\}
\end{gathered}
$$

Let B a nonterminal let $\mathrm{u} \in \mathrm{U}$, then:
if $\mathrm{u} \in \mathrm{V}, \mathrm{A}::=\alpha . \mathrm{B} \beta / \mathrm{V}$ propagates on $\mathrm{B}::=. \gamma / \mathrm{U}$
if $\mathrm{u} \notin \mathrm{V}, \mathrm{A}::=\alpha . \mathrm{B} \beta / \mathrm{V}$ spontaneously generates on $\mathrm{B}::=\gamma / \mathrm{U}$
$\operatorname{Goto}(\mathrm{I}, \mathrm{x})=\operatorname{Closure}\{\mathrm{A}::=\alpha \mathrm{x} . \beta / \mathrm{U} \mid \mathrm{A}::=\alpha \cdot \mathrm{x} \beta / \mathrm{U} \in \mathrm{I}\}$

LR(1) Grammars

```
Prop1: (No shift-reduce)
    \(\left(\forall I_{k} \in \operatorname{Coll}(1)\right),\left(\forall A::=\alpha . a \gamma / V, B::=\beta . / U \in I_{k}\right)\)
\(a \notin \mathrm{U}\)
```

Prop2: (No reduce-reduce)
$\left(\forall \mathrm{I}_{\mathrm{k}} \in \operatorname{Coll}(1)\right),\left(\forall \mathrm{A}::=\alpha . / \mathrm{V}, \mathrm{B}::=\beta . / \mathrm{U} \in \mathrm{I}_{\mathrm{k}}\right)$ $\mathrm{V} \cap \mathrm{U}=\{ \}$

Theorem. Let \mathbf{G} be a grammar.

- GELR(1) if and only if both Prop1 and Prop2 hold.
- G has shift-reduce, 1 symbol of lookahead, LR parser if and only if both Prop1 and Prop2 hold.

LR Parsing The Table Action for LR(1)

ACTION(i,a)=<shift,j>

if goto(Ii,a) $=\mathrm{Ij}$ and $\mathrm{a} \in \Sigma$
ACTION(i,a)= <reduce,p>

> if $\mathrm{A}::=\alpha . / \mathrm{U} \in \operatorname{li}$ and $\mathrm{p} \equiv \mathrm{A}::=\alpha$ and $\mathrm{a} \in \mathrm{U}$

ACTION(i,\$)= <accept,->
if $S^{\prime}::=$ S. $/ \$ \in$ Ii

GOTO(i,A)=j

if goto(Ii,A) $=\mathrm{Ij}$ and $\mathrm{A} \in \mathrm{N}$
$\mathrm{N}=$ =Nonterminal Set

Apply LR(1) to $\mathrm{G} \nsubseteq \operatorname{SLR}(1)$

```
I0:Closure \(\left(\left\{S^{\prime}::=. S\right\}\right)=\left\{S^{\prime}::=. S, \$\right.\)
\(S::=. A u, \$, S::=. a v, \$, S::=. B v, \$\),
A::= .a,u, B::=.xA,v\}
I1:Goto(I0,S) \(=\left\{\mathrm{S}^{\prime}::=\mathrm{S} ., \$\right\}\)
I2:Goto(I0,A)=\{S::=A.u,\$\}
I3:Goto(IO, a) \(=\{\mathrm{S}::=\mathrm{a} . \mathrm{v}, \$\)
        A::= a.,u\} No
                        conflict
I4:Goto(IO,B) =\{S::= B.v,\$ \(\}\)
I5:Goto(I0,x) \(=\{\mathrm{S}::=\mathrm{x} . \mathrm{A}, \mathrm{v}\)
    \(\mathrm{A}::=. \mathrm{a}, \mathrm{v}\}\)
I6:Goto(I2,u) \(=\{\mathrm{S}::=\mathrm{Au} ., \$\}\)
I7:Goto(I3,v) \(=\{\mathrm{S}::=\mathrm{av} ., \$\}\)
I8:Goto(I4,v) =\{S::=Bv.,\$\}
I9:Goto(I5,A) =\{S::=xA.,v\}
I10:Goto(I5,a) =\{A::=a.,v\}
```

$$
\begin{aligned}
& \mathrm{S}::=\mathrm{A} u \mathrm{l} \mathrm{av} \operatorname{lBv} \\
& \mathrm{~A}::=\mathrm{a} \\
& \mathrm{~B}::=\mathrm{x} A
\end{aligned}
$$

Space Complexity

Table Size	G=<S,V,ח,s>	
LL(1):	$\mathrm{O}(\mathrm{N} * \mathrm{~T})$	(with $\mathrm{N}=\|\mathrm{S}\|, \mathrm{T}=\|\mathrm{V}\|)$
SLR:	$\mathrm{O}(\mathrm{N} * \mathrm{P} * \mathrm{~T})$	(with $\mathrm{P}=$ production right hand size)
LR(1):	$\mathrm{O}(\mathrm{N} * \mathrm{P} * \mathrm{~T} * \mathrm{~T})$	
LALR(1): the same of SLR		

Example

 S::=SblcaSdlc```
Example: \(\mathrm{S}::=\mathrm{Sb}|\mathrm{caSd}| c\)
\(\mathrm{I} 0:\left\{\mathrm{S}^{\prime}::=. \mathrm{S} \quad \mathrm{S}::=. \mathrm{Sb} \quad \mathrm{S}::=. \mathrm{caSd} \quad \mathrm{S}::=. \mathrm{c}\right\}\)
I1=Goto(I0,S)=\{S \(::=S . S::=S . b\}\)
\(\mathrm{I} 2=\operatorname{Goto}(\mathrm{I} 0, \mathrm{c})=\{\mathrm{S}::=\mathrm{c} . \mathrm{aSd} \quad \mathrm{S}::=\mathrm{c}\).
\(\mathrm{I} 3=\operatorname{Goto}(\mathrm{I} 1, \mathrm{~b})=\{\mathrm{S}::=\mathrm{Sb}\).
I4=Goto(I2,a)=\{S::=ca.Sd \(S::=. S b \quad S::=. c a S d S::=. c\}\) kernel
\(\mathrm{I} 5=\operatorname{Goto}(\mathrm{I} 4, \mathrm{~S})=\{\mathrm{S}::=\mathrm{caS} . \mathrm{d} \quad \mathrm{S}::=\mathrm{S} . \mathrm{b}\}\)
 Goto(I4, c) \(=\mathrm{I} 2\)
I6=Goto(I5,d)=\{S::=caSd. \(\}\)
```


## Example - cnt.

## S::=Sb|caSd l c

I0:\{S'::=.S,\$ $\mathrm{S}::=. \mathrm{Sb}, \$ / b \quad \mathrm{~S}::=. \mathrm{caSd}, \$ / b$
$S::=. c, \$ / b\}$
I1=Goto(I0,S)=\{S'::=S.,\$ S::=S.b,\$/b\}
$\mathrm{I} 2=\operatorname{Goto}(\mathrm{I} 0, \mathrm{c})=\{\mathrm{S}::=\mathrm{c} . \mathrm{aSd}, \$ / \mathrm{b} \quad \mathrm{S}:::=\mathrm{c} ., \$ / \mathrm{b}\}$
$\mathrm{I} 3=\operatorname{Goto}(\mathrm{I} 1, \mathrm{~b})=\{\mathrm{S}::=\mathrm{Sb} ., \$ / \mathrm{b}\}$
$\mathrm{I} 4=\operatorname{Goto}(\mathrm{I} 2, \mathrm{a})=\{\mathrm{S}::=\mathrm{ca} . \mathrm{Sd}, \$ / \mathrm{b} \quad \mathrm{S}::=. \mathrm{Sb}, \mathrm{d} / \mathrm{b}$
S::=.caSd,d/b S::=.c,d/b\}
$\mathrm{I} 5=\operatorname{Goto}(\mathrm{I} 4, \mathrm{~S})=\{\mathrm{S}::=\mathrm{caS} . \mathrm{d}, \$ / \mathrm{b} \quad \mathrm{S}::=\mathrm{S} . \mathrm{b}, \mathrm{d} / \mathrm{b}\}$
I6=Goto(I4,c)=\{S::=c.aSd,d/b S::=c., d/b\}
$17=\operatorname{Goto}(\mathrm{I} 5, \mathrm{~d})=\{\mathrm{S}::=\mathrm{caSd} ., \mathrm{S} / \mathrm{b}\}=\operatorname{Goto}(\mathrm{I} 10, \mathrm{~b})$
$\mathrm{I} 8=\operatorname{Goto}(\mathrm{I} 5, \mathrm{~b})=\{\mathrm{S}::=\mathrm{Sb} ., \mathrm{d} / \mathrm{b}\}=$
$\mathrm{I} 9=\operatorname{Goto}(\mathrm{I} 6, \mathrm{a})=\{\mathrm{S}::=\mathrm{ca} . \mathrm{Sd}, \mathrm{d} / \mathrm{b} \quad \mathrm{S}::=. \mathrm{Sb}, \mathrm{d} / \mathrm{b}$

$$
S::=. c a S d, d / b \quad S::=. c, d / b\}
$$

$\mathrm{I} 10=\operatorname{Goto}(\mathrm{I} 9, \mathrm{~S})=\{\mathrm{S}::=\mathrm{caS} . \mathrm{d}, \mathrm{d} / \mathrm{b} \quad \mathrm{S}:::=\mathrm{S} . \mathrm{b}, \mathrm{d} / \mathrm{b}\}$ Goto(I9,c)=I6

## From $L R(1)$ to more compact LALR(1)

Each SLR(1) state

$$
\left\{\mathrm{t}_{1} \mathrm{t}_{2} \ldots \mathrm{t}_{\mathrm{k}}\right\}
$$

may be duplicated into $\mathrm{n} \operatorname{LR}(1)$ states

$$
\begin{gathered}
\left\{\mathrm{t}_{1} / \mathrm{U}_{11} \mathrm{t}_{2} / \mathrm{U}_{21} \ldots \mathrm{t}_{\mathrm{k}} / \mathrm{U}_{\mathrm{k} 1}\right\} \\
\ldots \ldots . \\
\left\{\begin{array}{c}
\left\{\mathrm{t}_{1} / \mathrm{U}_{1 \mathrm{n}} \quad \mathrm{t}_{2} / \mathrm{U}_{2 \mathrm{n}} \ldots\right. \\
\left.\mathrm{t}_{\mathrm{k}} / \mathrm{U}_{\mathrm{kn}}\right\}
\end{array}\right.
\end{gathered}
$$

## LALR(1)

merges state duplications

$$
\left\{\mathrm{t}_{1} / \mathrm{U}_{11} \cup \ldots \cup \mathrm{U}_{1 \mathrm{n}} \quad \mathrm{t}_{2} / \mathrm{U}_{21} \cup \ldots \mathrm{U}_{2 \mathrm{n}} \ldots \mathrm{t}_{\mathrm{k}} / \mathrm{U}_{\mathrm{k} 1} \cup \ldots \cup \mathrm{U}_{\mathrm{kn}}\right\}
$$

## Canonical Collection of LALR states: Coll

Let $\Leftrightarrow$ be the equivalence relation on $\operatorname{Coll}(1)$ defined below:

$$
\mathrm{I}_{\mathrm{j}} \Leftrightarrow \mathrm{I}_{\mathrm{k}} \text { iff } \mathrm{I}_{\mathrm{j} \downarrow} \downarrow 0=\mathrm{I}_{\mathrm{k}} \downarrow 0
$$

where $\mathrm{I} \downarrow 0=\{\mathrm{A}::=\alpha . \beta \mid \mathrm{A}::=\alpha . \beta / \mathrm{U} \in \mathrm{I}\}$

$$
\begin{aligned}
& \operatorname{Coll}_{\text {LALR }}=\operatorname{Coll}(1) / \Leftrightarrow=\{\mathrm{I} / \Leftrightarrow \mathrm{II} \in \operatorname{Coll}(1)\} \\
& \quad(\text { partition } \operatorname{Coll}(1) \text { modulo } \Leftrightarrow) \\
& \text { dove } \mathrm{I} / \Leftrightarrow=\mathrm{h} \in\{\mathrm{~J} \in \operatorname{Coll}(1) \mid \mathrm{J} \Leftrightarrow \mathrm{I}\}
\end{aligned}
$$



$$
\begin{aligned}
& \left(\forall \mathrm{I}_{\mathrm{j}} \mathrm{I}_{\mathrm{k}} \in \operatorname{Coll}(1)\right),(\forall \mathrm{a} \in \mathrm{~N} \cup \mathrm{~T}), \\
& \mathrm{I}_{\mathrm{j}}=\operatorname{Goto}\left(\mathrm{I}_{\mathrm{k}}, \mathrm{a}\right) \text { se e solo se } \mathrm{I}_{\mathrm{j}} / \Leftrightarrow=\operatorname{Goto}\left(\mathrm{I}_{\mathrm{k}} / \Leftrightarrow, \mathrm{a}\right)
\end{aligned}
$$

## SLR(1), LR(1), LALR(1): Conflict Comparation

## shift/reduce

$$
\mathrm{A}::=\alpha_{0} / \mathrm{U}, \mathrm{~B}::=\beta . a \delta / \mathrm{V} \in \mathrm{Ij} \in \operatorname{Coll}_{\mathrm{LALR}(1)} \text { and } \mathrm{a} \in \mathrm{U}
$$

$$
\mathrm{U}=\mathrm{U}_{1} \cup \ldots . . \cup \mathrm{U}_{\mathrm{n}}
$$



## The conflict persists in $\operatorname{LR}(1)$ for some $\mathbf{I}_{\mathbf{i}}(1 \leq i \leq n)$

## reduce/reduce

The conflict could be absent in LR(1)

## LALR(1) Grammars

$$
\begin{aligned}
& \text { Prop1: (No shift-reduce) } \\
& \qquad \begin{array}{l}
\left(\forall I_{k} \in \text { Coll }_{\text {LALR }}\right),\left(\forall \mathrm{A}::=\alpha . a \gamma / \mathrm{V}, \mathrm{~B}::=\beta . / \mathrm{U} \in \mathrm{I}_{\mathrm{k}}\right) \\
\mathrm{a} \notin \mathrm{U}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Prop2: }(\text { No reduce-reduce } \\
& \qquad\left(\forall I_{k} \in C o l l_{L A L R}\right),\left(\forall A::=\alpha . / V, B::=\beta . / U \in I_{k}\right) \\
& V \cap U=\{ \}
\end{aligned}
$$

Theorem. Let G be a grammar.

- GELALR(1) if and only if both Prop1 and Prop2 hold.
- G has shift-reduce, 1 symbol of lookahead, LALR parser if and only if both Prop1 and Prop2 hold.


## Bottom-up:

## Concluding Remarks

1. Why $\operatorname{SLR}(1) \subset \operatorname{LALR}(1) \subset \operatorname{LR}(1)$ is strict inclusion ?
2. Is for each language $\mathbf{L}$ decidable the existence of some $\mathbf{G}$ such that: $\mathrm{L}(\mathbf{G})=\mathbf{L} \quad$ and $\quad \mathbf{G} \in \operatorname{LALR}(1)[\mathrm{resp} . \mathbf{G} \in \mathrm{LR}(1)]$ ?
3. Why, looking for a 1-lookahead, bottom-up, parser for some G, people try proving $G \in \operatorname{SLR}(1)$, for first ?

# Bottom-up: <br> Concluding Remarks 

4. If $\mathrm{G} \notin \mathrm{LALR}(1)$ for some G , due to the violation of Prop.2, nevertheless $G \in L R$ can hold. Why?
5. Why SLR(1) $\subset \operatorname{LALR}(1)$ ?

- Prove that: if $G \in \operatorname{SLR}(1)$ then $G \in \operatorname{LALR}(1)$
- Prove that inclusion is really a strict one?

6. Let G be an ambiguous grammar:

Which of the two properties is violated, for sure: Prop. 1 or Prop2? Why?

