LR Parsing Three Different Parsers Three Different Finite Automata for VP_{G}

SLR The simplest to construct:

- Compact FSA Tables
- Small set of Context Free, Linear Time Analyzable, Languages

LR Quite simple to construct:

- Large FSA Tables
- Largest set of CF, LT Analyzable, Languages

LALR A good compromise between the two, above:

- Same size of the SLR Tables
- Significantly large, set of CF, LT Aanalyzable, languages
- A bit intricate to construct

SLR Parsing
 $V_{P_{G}}$ - Items of the LR(0) Collection

In order to detect Viable Prefixes, the grammar (canonical) productions can be examined. The use of Items is fundamental in such an exam.

> Let $A::=\alpha \beta$ be a canonical production. Then: $\quad A::=\alpha, \boldsymbol{\beta}$ is a $\operatorname{LR}(0)$ item.

Moreover, let: $\mathrm{S}=>^{*} \gamma \mathrm{~A} \delta=>\gamma \alpha \beta \delta$. Then:
$-\alpha$ is a trait of a viable prefix $\gamma \alpha$

- A::= $\alpha_{.} \beta$ is a valid item for $\gamma \alpha$
- Valid Items are collected into sets according to the prefixes that they can recognize;
- Each of such sets is a state of a finite state automaton of $\mathbf{V P}_{\mathbf{G}}$

SLR Parsing

The LR(0) Collection: State Closure

Two forms of closure (as for Dotted Automata):

- State Closure
- State Transition Closure

State Closure. Let I be a set of Valid Items. Then I is in the collection only if I=Closure(I

$$
\text { Closure }(I)==_{\min } I \cup \operatorname{Closure}\{B::=\gamma \mid A::=\alpha, B \beta \in I\}
$$

Why? What is the rational of the requirement, above?
If $A::=\alpha . B \beta$ is in I, then, for some ρ, it is considered valid for $\rho \alpha$. But $B::=\gamma$ too, is valid for $\rho \alpha$. As a matter of this fact:

$$
\text { if } S=>^{*} \rho A \delta=>\rho \alpha B \beta \delta \quad \text { then } \quad S=>^{*} \rho \alpha B \beta \delta=>\rho \alpha \gamma \beta \delta
$$

SLR Parsing

The LR(0) Collection: State Transition Closure

State Transition Closure. Let I be in the collection LR(0). Then all the outcomings of I are incomings of states of LR(0)

$$
\mathrm{J}=\operatorname{Goto}(\mathrm{I}, \mathrm{x})=\operatorname{Closure}\left\{\mathrm{A}::=\alpha x_{0} \beta \mid \mathrm{A}::=\alpha \times \boldsymbol{x} \boldsymbol{\beta} \in \mathrm{I}\right\}
$$

Why? What is the rational of the requirement, abobe? - A graphical answer

SLR Parsing The LR(0) Collection of G: The Initial State

The LR(0) Collection defines States and Transitions of the Viable Prefixes to SLR(1) parsing Handles.
The $\operatorname{LR}(0)$ Collection is a set of states of $\operatorname{LR}(0)$ Valid Items:

* Each state is closed w.r.t. a closure operation called Closure
* The transition set is closed w.r.t. a closure operation called Goto

The initial state of the $\operatorname{LR}(0)$ collection is $\mathbf{I 0}$ and is defined below. Let $\mathrm{G}=<\mathrm{S}, \mathrm{V}, \mathrm{P}, \mathrm{s}>$ be the grammar. Then, the augmented grammar of G , is $\mathrm{G}^{\prime}=\left\langle\mathrm{S} \cup\left\{\mathrm{s}^{\prime}\right\}, \mathrm{V}, \mathrm{P} \cup\left\{\mathrm{s}^{\prime}::=\mathrm{s}\right\}, \mathrm{s}^{\prime}>\right.$.
$\mathbf{I O}=$ Closure(\{s'::=.s $\}$)

Example

Apply The construction of LR(0) collection to the grammar G

```
Grammar G
    \(\mathrm{S}::=\mathrm{aABe}\)
\(\mathrm{A}::=\mathrm{Abc} l \mathrm{~b}\)
\(\mathrm{~B}::=\mathrm{d}\)
```

Augmented Grammar G'

$$
\begin{aligned}
& S^{\prime}::=\mathrm{S} \\
& \mathrm{~S}::=\mathrm{aABe} \\
& \mathrm{~A}::=\mathrm{Abc} \mathrm{l} \mathrm{~b} \\
& \mathrm{~B}::=\mathrm{d}
\end{aligned}
$$

Initial State I0

$$
\begin{aligned}
\text { I0:Closure }\left(\left\{S^{\prime}::=. S\right\}\right)= & \left\{S^{\prime}::=. S\right. \\
& S::=. . \mathrm{aABe}\}
\end{aligned}
$$

Computation of the remaining states

Example

Computation of the remaining states

$$
\begin{aligned}
& \mathrm{S}^{\prime}::=\mathrm{S} \\
& \mathrm{~S}::=\mathrm{aABe} \\
& \mathrm{~A}::=\mathrm{Abc} \mid \mathrm{b} \\
& \mathrm{~B}::=\mathrm{d}
\end{aligned}
$$

- Handle Items. They have the dot just on the right end (here, are red marked)
- Shift Items. They have the dot just on the left of a terminal symbol.
- Handles always have an Handle Item at the end of the prefix.

```
I0:Closure \(\left(\left\{S^{\prime}::=. S\right\}\right)=\left\{S^{\prime}::=. S\right.\)
        S::=.aABe \(\}\)
I1:Goto(IO,S) \(=\left\{S^{\prime}::=S_{0}\right\}\)
12: \(\operatorname{Goto}(10, a)=\{S::=\mathrm{a} . \mathrm{ABe}\)
    A::=.Abc
    A::=.b\}
I3: \(\operatorname{Goto}(\mathbb{I} 2, A)=\{S::=\mathbf{a A} . B e\)
    A::=A.bc
    \(B::=. d\}\)
I4: \(\operatorname{Goto}(\mathrm{I} 2, \mathrm{~b})=\{\mathrm{A}::=\mathrm{b}\) 。 \(\}\)
I5: \(\operatorname{Goto}(I 3, B)=\{S::=\mathbf{a A B} . \mathrm{e}\}\)
I6:Goto(I3,b) \(=\{\mathrm{A}::=\mathrm{Ab} . \mathrm{c}\}\)
I7: \(\operatorname{Goto}(I 3, \mathrm{dl})=\left\{\mathrm{B}::=\mathrm{d}_{0}\right\}\)
I8:Goto(I5,e) \(=\{\mathrm{S}::=\Omega A B \mathrm{Be}\}\)
I9: \(\operatorname{Goto}(\mathrm{I} 6, \mathrm{c})=\{\mathrm{A}::=\mathrm{Abc}\).
```


Example

The automaton of VP_{G} : Final States and Handles

LR(0) Collection
 LR(0) Collection

```
10:Closure \(\left(\left\{S^{\prime}::=. S\right\}\right)=\left\{S^{\prime}::=. S, S::=. a A B e\right\}\)
I1:Goto(I0,S) =\{S'::=S.\}
I2: \(\operatorname{Goto}(10, a)=\{S::=\mathbf{a} . A b e, A::=. A b c, A::=. b\}\)
I3:Goto(I2,A) \(=\{\mathbf{S}::=\mathrm{aA} . \mathrm{Be}, \mathrm{A}::=\mathrm{A} . \mathrm{bc}, \mathrm{B}::=. \mathrm{d}\}\)
I4: \(\operatorname{Goto}(I 2, \mathrm{~b})=\{\mathrm{A}::=\mathrm{b}\).
15: \(\operatorname{Goto}(I 3, B)=\{S::=\mathbf{a A B} . e\}\)
I6:Goto(I3,b) \(=\{\mathbf{A}::=\mathbf{A b} . \mathrm{c}\}\)
I7:Goto(I3,d) \(=\{\mathrm{B}::=\mathrm{d}\).
I8: \(\operatorname{Goto}(I 5, \mathrm{e})=\{\mathrm{S}::=\mathrm{aABe}\).
I9:Goto(I6,c) \(=\{\mathrm{A}::=\) Abc. \(\}\)
Augmented G'
\(S^{\prime}::=S\)
S::=aABe
A: : = Abclb
B::=d
```


Q: How a A_{Vp} recognizes viable prefixes?

- A: The set VP_{G} of the Viable Prefixes of the handle of G is just the language of A_{VP}, i.e. $\mathrm{L}\left(\mathrm{A}_{\mathrm{Vp}}\right)=\mathrm{VP}_{\mathrm{G}}$ - Q : Which are the final states of A_{vp} ?
- A: Each state is a final state. In particular, $\mathbf{I 0}$ is final for the prefix $\boldsymbol{\lambda}$.
- Q: Which of the following is not a prefix: a) $\lambda, \mathrm{b}) \mathrm{a}, \mathrm{c}) \mathrm{ab}, \mathrm{d}$) abb?
- A: abb is not.
- Q: When we cannot continue to traversing the automaton:
-(1) we are on the right of the handle?
-(2) we have just passed the end of a prefix whose terminal trait is or is not the string handle depending from the symbol following the prefix
- A: Answer can be obtained considering what happens in the following cases: a) ac, b) abd, c) abb.

Exercise: Use all the tools in this slide, and the answers to the questions above, to show the rightmost derivation of the string: abbcde ab bcde $\$<=$ aAbc de\$ <= aAd $\mathrm{e} \$<=\mathrm{aABe} \$<=\mathrm{S} \$<=\mathbf{S}$ ' $\$$

Push-Down Automata

are the perfect supports for SLR parsers

A Pushdown Automaton extends FSA and can be defined by the 6-tuple below: $\left\langle S, \Sigma, M: S \times \Sigma->S, D: M \times(\Sigma \cup S) *->(\Sigma \cup S)^{*}, s_{0} \in S, F \subseteq S\right.$
where $\mathbf{S}, \boldsymbol{\Sigma}, \mathbf{M}, \mathrm{s}_{0}, \mathbf{F}$ are the same of FSA, while ($\boldsymbol{\Sigma} \cup \mathbf{S}$)* is a stack.

Push-Down Automata

The definition of D for SLR(1) grammars

The function D for SLR(1)

$$
\begin{aligned}
&\left.-\operatorname{Shift}(\mathbf{k})=\operatorname{push}(\text { lookahead }) ; \text { push(} \mathrm{I}_{\mathrm{k}}\right) \\
&-\operatorname{Reduce}(\mathbf{A}::=\boldsymbol{\alpha})= \operatorname{popn}(2 * \mid \alpha \mathrm{l}) ; \\
& \operatorname{push}(\mathrm{A}) ; \\
&\left.\operatorname{push}\left(\text { Goto(} \text { Top }_{-1}, \mathrm{~A}\right)\right) ;
\end{aligned}
$$ where ME<Action,Goto>

SLR Parsing The Table M (Action-Goto) for SLR

Let $\mathrm{G}=<\mathrm{S}, \mathrm{V}, \Pi, \mathrm{s}>$ and I be the set of $\operatorname{LR}(0)$ Collection of G .
Table M (also, called, Action-Goto) consists of two Tables:
Action: is II-rows by IVU\{\$\}|-columns
Goto: is IIl-rows by ISl-columns

For each state, of I:
Action: The operation to apply (shift or reduce) Goto: The state to go after reduction

The definition of M requires the computation of:

- LR(0) Collection
- Follow(s), for each $s \in S$

SLR Parsing The Table Action for SLR(1)

Component, Action, of table M for SLR(1)

$$
\begin{aligned}
& \operatorname{ACTION}(\mathbf{i}, \mathbf{a})=\mathrm{s} / \mathbf{j} \\
& \text { if } \operatorname{goto}(\mathrm{Ii}, \mathrm{a})=\mathrm{Ij} \text { and } \mathrm{a} \in \boldsymbol{\Sigma} \\
& \begin{aligned}
\operatorname{ACTION}(\mathbf{i}, \mathbf{a})= & \mathbf{r} / \mathbf{p} \\
& \text { if } \mathrm{A}::=\alpha . \in \operatorname{li} \text { and } \mathrm{p} \equiv \mathrm{~A}::=\alpha \text { and } \\
& \mathrm{a} \in \operatorname{follow}(\mathrm{~A})
\end{aligned}
\end{aligned}
$$

ACTION(i,\$)= <accept,-> if $S^{\prime}::=S . \in$ Ii

Where: $\mathrm{s} / \mathrm{j}=$ shortening for Shift($\mathbf{I} \mathbf{j})$;
r/p = shortening for Reduce(p)

SLR Parsing The Table Goto for SLR(1)

Let $\mathrm{G}=<\mathrm{S}, \mathrm{V}, \Pi, \mathrm{s}>$
GOTO $(\mathbf{i}, \mathrm{A})=\mathbf{j}$ if $\operatorname{goto}(I i, A)=1 j$ and $A \in S$

Example Table Action-Goto SLR(1)

LR(0) Collection
I0:Closure ($\left\{S^{\prime}::=. S\right\}$) =\{ $\left.S^{\prime}::=. S, S::=. . a A B e\right\}$
I1:Goto(I0,S) =\{S'::=S.\}
I2:Goto(I0,a) =\{S::= a.Abe, A::=.Abc, A::=.b\}
I3:Goto(I2,A) $=\{\mathbf{S}::=\mathrm{aA} . B e, ~ A::=A . b c, B::=. d\}$
I4:Goto(I2,b) =\{A::=b.\}
I5:Goto(I3,B) $=\{\mathbf{S}::=\mathbf{a A B} . e\}$
I6:Goto(I3,b) $=\{\mathbf{A}::=A b . c\}$
I7:Goto(I3,d) =\{B::= d.\}
18:Goto(15,e) $=\{\mathbf{S}::=\mathbf{a A B e}$.
I9:Goto(I6,c) $=\{\mathbf{A}:$:=Abc. $\}$

Augmented G'

$$
\begin{array}{ll}
& S^{\prime}::=S \\
0 & S::=\text { aABe } \\
1 \mid 2 & A::=A b c \mid b \\
3 & B::=d
\end{array}
$$

Source Grammar

$$
S^{\prime}::=\mathbf{S}
$$

0 S::=aABe
112 A: : Abc l b
3 B:: d
Table of Follow
follow(S)=\{\$\} follow $(A)=\{b, d\}$ follow $(B)=\{e\}$

DRIVER: shift-reduce

```
a a a a a a a a a a a a
```


I/O Control

ACTION(Top,Sym)

$=\mathbf{S} / \mathrm{K} \quad\{$ push(Sym);push(K) $\}$
$=\mathrm{R} / \mathrm{p} \quad\{\mathrm{pop}(2 * \mathrm{n}), \mathrm{push}(\mathrm{A})$, push(goto(top-1,top))\}
where: $\mathrm{p}=\mathrm{A}::=\alpha$ and $|\alpha|=\mathrm{n}$
$=$ ACC \{stop\}
= undef \{error\}

