
BOTTOM UP PARSINGBOTTOM UP PARSING
Why? - Question1Why? - Question1

2. Consider the language L ={un zm | n n >> m m}
a) Give a grammar G such that L(G) = L
b) Is G ∈LL(1) ?
c) Have transformations of G, if any, predictive parsers ?

Consider string γγ=u=u1010zz44: γγ is a string of L, because 10>4 satisfies the condition for inclusion, i.e n>m. Noting
that, in order to conclude that γγ ∈L, we computed the occurrences of u, those of z and then, we compared the
two values. Such arguments cannot be used in syntactic analyzers, that are very elementary structures (compa-
red to those for general programming). Hence, the question is:
 How can an syntactic analyzer proceed in deciding about the inclusion of How can an syntactic analyzer proceed in deciding about the inclusion of γγ in L? in L?

Remember that, an analyser is moving left-to-right on the string, one symbol a time. So, now, the question is:
 What must doing analyzer, when reads the first u?What must doing analyzer, when reads the first u?

BOTTOM UP PARSINGBOTTOM UP PARSING
Why? Question2Why? Question2

Remember that, an analyser is moving left-to-right on the string, one symbol a time. So, now, the question is:
 What must doing analyzer, when reads the first u?What must doing analyzer, when reads the first u?

Nothing else than store it in somewhere and, continue scanning until to the first zz, if any. Then, for
each zz that is read, one uu must be retrieved. When all zz’s are paired to as many, previously stored, uu’s,
then, at least one uu must be again in the store. So, now, the question is:
 How can be expressed such a behavior, using analyzers?How can be expressed such a behavior, using analyzers?
 And, using grammars? And, using grammars?

2. Consider the language L ={un zm | n n >> m m}
….

BOTTOM UP PARSINGBOTTOM UP PARSING
Why? Question3Why? Question3

2. Consider the language L ={un zm | n n ≥≥ m m}
….

A::= u A B::= u B z
A::= u B B::= ε

How can be expressed such a behavior, using grammars?How can be expressed such a behavior, using grammars?

How can be expressed such a behavior, using analyzers?How can be expressed such a behavior, using analyzers?

u
u
.
.
.
u
$

z…z$
u
.
.
u
$

$

After the storing of u

After the pairing of u and z

BOTTOM UP PARSINGBOTTOM UP PARSING
Why? The AnswersWhy? The Answers

A::= u A B::= u B z
A::= u B B::= ε

How can be expressed such a behavior, using grammars?How can be expressed such a behavior, using grammars?

Such a grammar is not LL(k) for any k because for each k, uk∈firstk(uA)∩firstk(uB). So, no way for
deterministic, leftmost derivations, that are looking for a limited lookahead. Trying to do it:

A => u A
or
A => u B

In contrast, rightmost derivation leads to the the derivation below (obtained in reversed order):
u u u z <= u u u B z <= u u B <= u A <= A

shift-reduce parsing (LR)

S::= abABe
A::= Abc | b
B::= d

 abbbcde ∈L(S) ?

abbbcde<=abAbcde<=abAde<=abABe<=S

Reversed rigthmost

BOTTOM UP PARSINGBOTTOM UP PARSING
 (now: => means r=>, when omitted)

To do it means to know what of the followings β <= α :
abbbcde

abbbcde A::=b<= aAbbcde
abbbcde A::=b<= abAbcde
abbbcde A::=b<= abAcde
abbbcde B::=d<= abbcBe

Reversed Reconstruction of aReversed Reconstruction of a
Right Derivation: How to do it?Right Derivation: How to do it?

is, in effect:
• involving two Right Sentential Forms - two Right Sentential Forms - α, β∈RSFG
• (equally) a Right Derivation - Right Derivation - α r=> β;
• (equally) a part of a (Reversed) Right Star DerivationRight Star Derivation from
 the start symbol - S r=>∗ α r=> β

Let γ≡γ1βγ2 be in RSF.
 A::=A::=ββ is the Handle of is the Handle of γγ if and only if S=>* γ1Aγ2 => γ1βγ2

BOTTOM UP PARSINGBOTTOM UP PARSING
The Handle - The Viable Prefixes: The Process

1) Scan the Right Sentential Form, from left to right, one symbol
 a time, through (Viable) Prefixes of the Handle.

2) Stop when the Handle has been just, traversed.

3) Reduce it, thus obtaining a new RSF.

4) Then repeat 1-3.

Let G≡<V,∑,S,Π> be

The 4 steps Analysis ProcessThe 4 steps Analysis Process

BOTTOM UP PARSINGBOTTOM UP PARSING
The Process

1) Scan the Right Sentential Form, from left to right, one symbol
 a time, through (Viable) Prefixes of the Handle. For

The Process Critical Point is Step 1The Process Critical Point is Step 1

- BacktrackBacktrack among all possible choises
- RestrictRestrict to the class of GrammarsGrammars admitting:

- deterministic selection
- in linear space/time complexity

Two approaches for unambiguous grammars:

Such a classSuch a class of good grammars exists and its name is LRis LR

LR Analyzers are based on a different kind of Push-Down Automata
driver Ddriver D uses shiftshift and reducereduce (state transition) operations
tabella Mtabella M contains states of itemsstates of items and handleshandles

LR is more powerful than LL:
It applies a rightmost reduction only after traversing

 the entire string to be replaced

S::= u S | u A
A::= u A z | u B z
B::= v B | v

BOTTOM UP PARSINGBOTTOM UP PARSING
LR Grammars include LL GrammarsLR Grammars include LL Grammars

apply it to the grammar below and to a string of your choise

γ ≡ vuuz, α ≡ λ
γ ≡ vuuz, α ≡ v
γ ≡ uuvz, α ≡ u
γ ≡ uuvz, α ≡ uu

LR ParsingLR Parsing
Mechanize the Handle Selection: Prefixes

S::= u S | u A
A::= u A z | u B z
B::= v B | v

Consider the grammar on the right and a
string γ. Can γ have an handle that should
be prefixed by α?

LRLR uses prefixes, like α, in order to detectdetect Handles

∃βδ: 1) γ ≡ αβδ; 2) Α::=β Π;
 3) S r=>∗ αΑδ r=> αβδ

It means that

LR ParsingLR Parsing
The set of (Viable) Prefixes is aThe set of (Viable) Prefixes is a

Regular LanguageRegular Language
Given a (LR) grammar G, the prefixes of the handles of RSF are called
viable prefixesviable prefixes, and include the handle itself. The set of VPVPGG below, is
a Regular LanguageRegular Language

VPVPG G = {prefix(= {prefix(ααββ) |) | A::=A::=β∈β∈ΠΠGG, , ααAAδδ =>=>ααββδδ∈∈ RFSRFSGG for some for some δδ}}

Hence VPVPGG has Finite State Automaton that can recognize all and only strings
ααββ whose terminal part is the handle, if any

It results in a table that will be used as the central core of
the handle detection mechanization

