2. Consider the language L ={u"z™ | n>m}
a) Give a grammar G such that L(G) = LL
b) Is G €LL(1) ?
¢) Have transformations of G, if any, predictive parsers ?

Consider string y=ul%z*: y is a string of L, because 10>4 satisfies the condition for inclusion, i.e n>m. Noting
that, in order to conclude that y €L, we computed the occurrences of u, those of z and then, we compared the
two values. Such arguments cannot be used in syntactic analyzers, that are very elementary structures (compa-

red to those for general programming). Hence, the question is:
How can an syntactic analyzer proceed in deciding about the inclusion of y in L.?

Remember that, an analyser is moving left-to-right on the string, one symbol a time. So, now, the question is:
What must doing analyzer, when reads the first u?



2. Consider the language L ={u"z™ | n>m}

Remember that, an analyser is moving left-to-right on the string, one symbol a time. So, now, the question is:
What must doing analyzer, when reads the first u?

Nothing else than store it in somewhere and, continue scanning until to the first z, if any. Then, for
each z that is read, one u must be retrieved. When all z’s are paired to as many, previously stored, u’s,
then, at least one u must be again in the store. So, now, the question is:

How can be expressed such a behavior, using analyzers?
And, using grammars?



2. Consider the language L ={u”z™ | n=m}

How can be expressed such a behavior, using analyzers?

After the pairing of u and z

After the storing of u

How can be expressed such a behavior, using grammars?

A::=uA B:=uBz
A::=uB B:=¢



How can be expressed such a behavior, using grammars?

A::=uA B:=uBz
A::=uB B:=¢

Such a grammar is not LL(k) for any k because for each k, u*&first, (uA)Nfirst, (uB). So, no way for
deterministic, leftmost derivations, that are looking for a limited lookahead. Trying to do it:
A=>uA
or
A=>uB

In contrast, rightmost derivation leads to the the derivation below (obtained in reversed order):
uuuz<=uuuBz<=uuB<=uA<=A



S::=abABe
A::=Abc | b abbbcde €L(S) ?

B::=

Reversed rigthmost

abbbcde<=abAbcde<=abAde<=abABe<=S

shift-reduce parsing (LR)




To do it means to know what of the followings § <= o :

abbbcde
abbbcde ,.._,<= aAbbcde
abbbcde ,.._,<= abAbcde
abbbcde ,.._,<= abAcde
abbbcde 5.._;<= abbcBe

18, 1n effect:
 involving two Right Sentential Forms - o, PERSF;
* (equally) a Right Derivation - o => f3;
e (equally) a part of a (Reversed) Right Star Derivation from
the start symbol - S =>* o =>f



Let G=<V > S.II> be

Let y=y,pPy, be in RSF.
A:u:=f is the Handle of y irandontyir S=>* y,Ay, =>v,BY,

The 4 steps Analysis Process

1) Scan the Right Sentential Form, from left to right, one symbol
a time, through (Viable) Prefixes of the Handle.

2) Stop when the Handle has been just, traversed.

3) Reduce it, thus obtaining a new RSF.

4) Then repeat 1-3.



The Process Critical Point is Step 1
1) Scan the Right Sentential Form, from left to right, one symbol

a time, through (Viable) Prefixes of the Handle. For

Two approaches for unambiguous grammars:

- Backtrack among all possible choises

- Restrict to the class of Grammars admitting:
- deterministic selection
- in linear space/time complexity

Such a class of good grammars exists and its name is LR



LR Analyzers are based on a different kind of Push-Down Automata
driver D uses shift and reduce (state transition) operations
tabella M contains states of items and handles

LR is more powerful than LL:
It applies a rightmost reduction only after traversing
the entire string to be replaced

apply it to the grammar below and to a string of your choise




Consider the grammar on the right and a
string y. Can y have an handle that should

be prefixed by a? y=vuuz, a=»A
Y=vVuuz, o=V
Y=uuvz, o=u
Y = uuvz, O =uu

It means that
4B0: 1) y = apo; 2) A::=f II;

3) S =>*aAd => afd

LR uses prefixes, like o, in order to detect Handles




Given a (LR) grammar G, the prefixes of the handles of RSF are called
viable prefixes, and include the handle itself. The set of VP below, is
a Regular Language

- for some 0}

Hence 7P has Finite State Automaton that can recognize all and only strings
v, whose terminal part is the handle, if any

.

It results in a table that will be used as the central core of
the handle detection mechanization




