
procedure PA();	

	
begin	

	
case lookahead of	

	
 	
caseof(α1): **codeof(α1)**;	

	
 	
caseof(α2): **codeof(α2)**;	

	
 	
........	

	
 	
caseof(αn): **codeof(αn)**;	

	
 	
end	

	
end;	

procedure PE();	

begin	

 case lookahead of	

	
 + : begin match(+); PF; PE end	

	
 $: nop	

 end	

end;	

As an example: The complete definition of PE() is:	

E::= F E	

E::= + F E	

E::= ε	

Complexity: * linear O(n) for n-words phrases 	

 * No backtrack: A Failure means “out of the language”	

Recursive Descent using First and Follow ���
Conclusive Remarks	

Theorem. Let G be a context free grammar:	

 - G∈LL(1) if and only if both Properties, 1 and 2, hold	

 - G admits predictive, linear, 1-Lookahead Symbol Parser	

 if and only if both Properties, 1 and 2, hold	

lookahead	
 beginner	

Analysis	

Table	

I/O
controller	

driver	

nexttoken	

gettoken	

Op Num Assign Ide	

Stack	

Predictive Parsing	

Driver 	

is an encoding of D	

Table	

M	

x	

$	

z	

y	

a	
 +	
b	
 $	

From Scanner	

To Semantics 	

 Analysers	

The function D for LL(1)	

For each grammar production A::=αi	

+ ∀a ∈(first(αi)-ε), 	

	
M(A,a):= A::= αi	

+ if ε ∈first(αi) then:	

	
∀ b ∈follow(A), 	

	
 	
M(A,b):= A::= αi	

+ All the remaining table entries are marked “failure”	

Grammar Transformation:	

 Left Factoring	

 Left Recursion Removal 	

 Kleene’s Star Removal	

Costruzione tabella M	

 calcolo FIRST e FOLLOW	

Predictive Paser: Adaptive/Generator���
To Do: In Summary	

0.E::= F E 	
 5.F::= T F 	

1.E::= + F E 6.F ::= * T F	

2.E::= ε 7.F ::= ε 	

3.T::= Num 	
 8.T::= Ide T	

4.T::= Num 	
 9.T::= ε	

Apply the construction of the adaptive/generator to a grammar (already 	

transformed)	

First(F E) = {Ide, Num}	

First(+ F E) = {+}	

First(T F) = {Ide, Num}	

First(* T F) = {*}	

Fw(E) = Fw(E) = {$}	

Fw(F) = Fw(F) = First(E$) = {+,$}	

Fw(T) = Fw(T) = First(F)∪Fw(F)	

	
 	
 = {*}∪{+,$}	
 '+ '* Ide Num $
E 0 0
E 1 2
F 5 5
F 7 6 7
T 8 3
T 9 9 4 9

Example	

Top Down: ���
Concluding Remarks -1 	

4. Are LL(K)-Grammars strongly included in LL(1)-Grammars ?	

5. Are LL(K)-Languages strongly included in LL(1)-Languages ?	

6. What about conditions for LL(k) 	

	
let G=<V, Σ, s, ∏>	

Top Down: ���
Concluding Remarks -2	

6. Definition of firstk e followk	

∀G=<V,∑,s,P>, 	

•  ∀γ∈(∑∪V)*, 	

	
 firstk(γ)={α | γ l=>*αγ’ ∧ (|α|<k ⊃ |γ’|=0)}	

	
 	
 ∪ {ε | γ l=>* λ}	

•  ∀A∈V, 	

	
 followk(A)={α | ∃δAγ∈LSFG, α∈firstk(γ$)	

Top Down: ���
Concluding Remarks -3	

Top Down: Implementations	

Parser Predittivo	

Recursive Descent	

- Stack: Activation Records P calls	

-Recursion: Tail is Not Applicable	

-Error Recovery: Complicate	

-Correctness: User Competence	

-Adaptability: Low	

Adaptive/Generator	

- Stack: Grammar Symbols	

- Driver: Tailored for LL-Analysis	

- Error Recovery: included in Driver	

- Correcteness: Grammar	

- Adaptability: Hight	

Tailored for LL (1) the code is written in a suitable language and possibly tested or verified, only once. (2) the code has been
designed to interface in the most suitable and efficient way for the used platform.	

Recovery (1) It requires the knowledge of specific techniques (2) The implementation may result hard to do when the recovery
structures have to traverse the language control stasks (as in the recursive descent parsers).	

Correctness: (1) Only limited to grammar correcteness; (2) Safe transformations, from the grammar to the analyser, are used 	

Adaptability: The grammar of a language (not the syntax) is changed during implementation. For example, Javac adopted a LALR
grammar for Java, obtained after many changes that affected the Abstract Syntax Tree of programs.	

