
Abstract Machine Abstract Machine - - Machine StructureMachine Structure

Programs
Data

Store

Interpreter
Interpretation cycle

Op1
…

Opk

Instruction Fetch
Sequence Control

Operands Fetch
Data Control

Store Management
Static/dynamic Model

Control

MA: MA: Structure Structure e e Executor StatesExecutor States

MA:MA:
StoreStore, Control, Control

Store:Store: It is structured according to a model that relies on
the specific features of the Machine Language

• arrays of words, registers, stacks
• heap - for dynamic allocation (Pascal, C, C++, …,Java,
• graph - for structure sharing (functional languages)

Control: Control: It handles the Executor States:
• finds the next statement or expression
• finds the stat. or espr. data
• updates store

start

Instruction Fetch

decode

Operands Fetch

Exec Selection

Op1 Opn halt

stop

MA:MA:
Elementary Execution CycleElementary Execution Cycle

The The ProblemProblem: Given Given a new a new languagelanguage, L0, , L0, how how a MA a MA for for L0 canL0 can
 be builtbe built??

• Let L0=(S0,SEM0)
• Let M1= (L1=<S1,SEM1>,EL1) an available MA

 where (obviously) L0≠L1

Two Main Approaches:
IntepreterIntepreter

defines executor EL0 as a program of L1 which describes
the behaviour of the L0 structures using EL1

CompilerCompiler
Maps each structure (program) of L0 into an equivalent
structure (program) of L1.

On Building MAsOn Building MAs

Running Application (P,n) of L0 consists in

Running Application (ELO,(P,n))

provided:
+ ELO is an interpreter, in L1, of L0
+ (P,n) has a suitable representation datum in L1

InterpreterInterpreterL0=(S0,SEM0)
M1= (L1=<S1,SEM1>,EL1)

ΕL1

P,n SEM(P)(n)

ΕΕLLOO,(P,n) ΕL1(ΕLO,(P,n))

∈ S0

∈ S1

M1 M0

Interpreter: ExampleInterpreter: Example
• L0=(S0,SEM0) is C-like
• Let M1= (L1=<S1,SEM1>,EL1) an available

where L1 is a 3-address code Language

The interpretation sequence provided by The interpretation sequence provided by EL0 in M in M11 for: for:
while x {x=x+y*z}while x {x=x+y*z}

could be expressed in a form like:could be expressed in a form like:
call call EELL00 ((while x {x=x+y*z})while x {x=x+y*z})

and generates an and generates an execution step sequence execution step sequence like:like:
find find locxlocx
br br @@locx locx ……
findfind valyvaly
find find valzvalz
find find freeR0freeR0
put* put* valy valzvaly valz into into freeR0freeR0
put+ @put+ @locxlocx @@freeR0 freeR0 into into locxlocx
callcall EELL0 0 ((while x {x=x+y*z})while x {x=x+y*z})

Black steps are machine language statements.Black steps are machine language statements.
Red colored steps are meta-code which mayRed colored steps are meta-code which may
describe machine states/action or lead to gene-describe machine states/action or lead to gene-
ration of new execution stepsration of new execution steps

InterpreterInterpreter: Inside E: Inside EL0L0

A collection of, suitably correlated, procedures (and
supporting structures) that implement:

• The Steps (Fetch-Decode-Execute) of the
 Interpretation Cycle Interpretation Cycle of the MA for L0

• The StoreStore ModelModel of data and programs of L0
• The Control Unit Control Unit for data and code access of L0
• The PrimitivePrimitive OperatorsOperators and DataData of L0

• A compiler do not apply to application application (P,n)(P,n)
• Instead, it deals directly with programs programs PP

CLO
preserves the semantics:

SEMO(P) = SEM1(CLO(P))

ΕL1

 CL0(P)

!ΕL0?

∈ S0 ∈ S1

EL1(CL0,P)CCL0L0,P

P

C0→1↓1

CompilerCompiler
It is calledIt is called
Source programSource program

It is calledIt is called
Object programObject program

Proving Compiler Correctness is clearer and more Proving Compiler Correctness is clearer and more
evident than Proving Interpreter evident than Proving Interpreter CorrectenessCorrecteness

Compiler: ExampleCompiler: Example
• L0=(S0,SEM0) is C
• Let M1= (L1=<S1,SEM1>,EL1) an available

where L1 is a 3-address code Language

The compilation provided by The compilation provided by EL0 in M in M11 for: for:
while x {x=x+y*z}while x {x=x+y*z}

generates a Lgenerates a L11 codecode like:like:
find find locxlocx
br br @@locx locx 77
findfind valyvaly
find find valzvalz
find find freeR0freeR0
put* put* valy valzvaly valz into into freeR0freeR0
put+ @put+ @locxlocx @@freeR0 freeR0 into into locxlocx
jmpjmp- 7- 7

Compiled code is more efficient and
less time consuming than Intepreted code

Compiler:Compiler:
Run Time SupportRun Time Support

RTS = Collection of data structures and procedures which are
 written in the object language and implement:

•• Store Store ModelModel for data and programs
•• Primitives Primitives data and operations
•• Control Control Model for Model for Activation Record and Control TransferActivation Record and Control Transfer

 of the source language

• It does not depend from the form of the source to be compiled
• It may be used from the object of possibly, any source

PropertiesProperties

CharacteristicsCharacteristics

RTS is conceptually the same to that present in Interpreters
for modeling Store, Control, and Primitives

EL1

CLCL00

!ΕL0?

EL1(CL0(P),n)CL0(P),n
CL0(P)∈S1

EL0(P,n)P∈S0

Compiler:Compiler:
The Underlying MachineThe Underlying Machine

RTS

C0→1↓1

metalinguaggio

EL2

!EL!EL00??

Linguaggio target
(object language)

EL1

CL0

P∈S0 CL0(P)∈S1
oggetto per L1sorgente di L0

Macchina Macchina HostHost

CL0(P),n EL1(CL0(P),n)

Macchina TargetMacchina Target

C0→1↓2

Compiler:Compiler:
Development MachineDevelopment Machine

RTS

Development Techniques and Use of compilers are much
versatile and flexible compared to those of interpreters

As higher is the expressiveness of a language as higher is the
complexity of the interpretation cycle of (some of) its structures
and instructions
- harder is the construction of an executor of the language

A A Hierarchy Hierarchy of of MachinesMachines
• reduces language expressiveness at each level
• simplifies the compilation of High Level language

Hierachy Hierachy of of Development MachinesDevelopment Machines

Machine HierachyMachine Hierachy: : ExampleExample
Multithread

Control Transfer

Dynamic Allocation

Target Machine

When When the Target the Target Machine is Machine is aa
Concrete Concrete MachineMachine

• No conceptual difference
• but Executor is effective

Higher Order

Classes of Machines exist in correspondence to the
different Programming Language Paradigms

• Imperative
• Functional
• Logic
• Object oriented

 They differ for the supporting structures:
• store
• control
• decode (machine intepretation cycle)
• primitive data and operations

Classes Classes of of MacchinesMacchines

Compiler vs. Interpreter

Proving Proving Compiler Correctness is clearerCompiler Correctness is clearer and more evident than Proving and more evident than Proving
Interpreter Interpreter CorrectenessCorrecteness

Compiled code is more efficientCompiled code is more efficient and less time consuming than and less time consuming than Intepreted Intepreted
codecode

RTS is conceptually the sameRTS is conceptually the same to that present in Interpreters for modeling to that present in Interpreters for modeling
Store, Control, and PrimitivesStore, Control, and Primitives

Development Techniques and UseDevelopment Techniques and Use of compilersof compilers are much are much versatile andversatile and
flexibleflexible compared to those of interpreters compared to those of interpreters

Intermediate Machine:Intermediate Machine:
Mixed ConstructionMixed Construction

Lt:Target Language
Machine of Lt

interprete

compiler

L0:Source Language
Machine of L0

LI:Intermediate Lang.
Machine of LI

Pro:
• contained development cost
• higher portability
• compact object code:

• memory space
• run time

Virtual MachineVirtual Machine
A A unique machineunique machine with with many implementationsmany implementations: One for each: One for each
different computer platformdifferent computer platform

L1:Machine Language
Platform1 (Linux)

LV:Machine Language
Virtual Machine

Lk:Machine Language
Platformk (OSX)

A A unique compilerunique compiler for for each Languageeach Language

C0→V↓V

LL00:Source Language:Source Language

LV:Machine Language
Virtual Machine

Compiler, Interpreter:Compiler, Interpreter:
contexts, structures componentscontexts, structures components

• Working Context: preprocessing and loading
• Compiler: Structure, phases and steps
• Interpreter: Structure
• Compiler-Compiler: How really do it !
• Bootstrapping
• A view of the phases: Example

Preprocessor

Compiler

Assembler

Link-Loader

Source program

Object program

Codice rilocabile

Assoluto eseguibile

Link e macros

Librerie
rts

Struttura dei moduli

Contesto del
Compilatore:
Font-end
Back-end

Analisi Lessicale

Analisi Sintattica

Analisi Statica

Codice Intermedio

Ottimizzazione

Codice target

Tabella
Simboli

Errori

Fasi e Passi:
 6 fasi
 k(≥1) passi

CompilatoreCompilatore:: struttura struttura,, fasi fasi ee passi passi

Analisi Lessicale

Analisi Sintattica

Analisi Statica

Emulatore su
Codice target

Tabella
Simboli

Errori

Fasi e Passi:
 4 fasi
 k(≥1) passi

Interprete: La struttura standardInterprete: La struttura standard

The development of a compiler, from a language L0 into a language Lt,
may involve other languages, Lm, called meta-languages

How much differ C0→t↓m and C0→t↓n?

Metalanguages are used to express data and procedure for analysis and translations.
They affect the compiler performance which is forced to run on the chosen meta.

How to overcome this meta-language limitation?
Answer: Combining Intepreter and Compiler

CompilerCompiler--CompilerCompiler: : HowHow toto limitlimit
metalanguage use metalanguage use and and simplifysimplify

compiler constructioncompiler construction

• Construct an interpreter EE00↓↓mm (It runs L0 programs on a
 machinea Mm). It is a development tool

• Construct a compiler CC00→→tt↓↓00 : Noting that CC is now written in
source language L0. Hence, no metas are used.

• Run: EE00↓↓mm(C(C00→→tt↓↓00)(C)(C00→→tt↓↓00)) obtaining CC00→→tt↓↓tt

CC00→→tt↓↓00 does not use meta-languagesdoes not use meta-languages

BootstrappingBootstrapping

CompilerCompiler--Compiler Compiler &&
BootstrappingBootstrapping: : ExampleExample

Development of a Compiler for Java in 3-address PDP/11 code:Development of a Compiler for Java in 3-address PDP/11 code:
LL00=Java=Java LLtt= PDP/11 code= PDP/11 code

A time consuming, experimental, correct interpreter JA time consuming, experimental, correct interpreter JC++C++ of Java of Java
is available. It is running on C++. Then, we use it:is available. It is running on C++. Then, we use it:

 EE00↓↓mm == JJC++C++

We use Java for writing down the classes and methods implement-We use Java for writing down the classes and methods implement-
ing each phase (Lexical,ing each phase (Lexical,……,Target Code) of,Target Code) of

 CCJavaJava→→PDP/11PDP/11↓↓JavaJava

A A view view on the on the Compiler phasesCompiler phases
through an Examplethrough an Example

fig. 1.10 pag. 13 [Aho]

Analisi Lessicale

Analisi Sintattica

Analisi Statica

Codice Intermedio

Ottimizzazione

Codice target

Tabella
Simboli

Errori

Fasi e Passi:
 8 fasi
 k(≥1) passi

Codice Intermedio

Correttezza
Terminazione - proprieta’ varie

Compilatore: Una struttura perCompilatore: Una struttura per
analisi di correttezza avanzateanalisi di correttezza avanzate

