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Preface to the Java SE 8 Edition

IN 1996, James Gosling, Bill Joy, and Guy Steele wrote for the First Edition of
The Java® Language Specification:

"We believe that the Java programming language is a mature language, ready for
widespread use. Nevertheless, we expect some evolution of the language in the
years to come. We intend to manage this evolution in a way that is completely
compatible with existing applications."

Java SE 8 represents the single largest evolution of the Java language in its history.
A relatively small number of features - lambda expressions, method references, and
functional interfaces - combine to offer a programming model that fuses the object-
oriented and functional styles. Under the leadership of Brian Goetz, this fusion
has been accomplished in a way that encourages best practices - immutability,
statelessness, compositionality - while preserving "the feel of Java" - readability,
simplicity, universality.

Crucially, the libraries of the Java SE platform have co-evolved with the Java
language. This means that using lambda expressions and method references to
represent behavior - for example, an operation to be applied to each element in
a list - is productive and performant "out of the box". In a similar fashion, the
Java Virtual Machine has co-evolved with the Java language to ensure that default
methods support library evolution as consistently as possible across compile time
and run time, given the constraints of separate compilation.

Initiatives to add first-class functions to the Java language have been around since
the 1990s. The BGGA and CICE proposals circa 2007 brought new energy to
the topic, while the creation of Project Lambda in OpenJDK circa 2009 attracted
unprecedented levels of interest. The addition of method handles to the JVM in
Java SE 7 opened the door to new implementation techniques while retaining
"write once, run anywhere." In time, language changes were overseen by JSR 335,
Lambda Expressions for the Java Programming Language, whose Expert Group
consisted of Joshua Bloch, Kevin Bourrillion, Andrey Breslav, Rémi Forax, Dan
Heidinga, Doug Lea, Bob Lee, David Lloyd, Sam Pullara, Srikanth Sankaran, and
Vladimir Zakharov.

Programming language design typically involves grappling with degrees of
complexity utterly hidden from the language's users. (For this reason, it is often
compared to an iceberg: 90% of it is invisible.) In JSR 335, the greatest complexity

Xix
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lurked in the interaction of implicitly typed lambda expressions with overload
resolution. In this and many other areas, Dan Smith at Oracle did an outstanding
job of thoroughly specifying the desired behavior. His words are to be found
throughout this specification, including an entirely new chapter on type inference.

Another initiative in Java SE 8 has been to enhance the utility of annotations, one
of the most popular features of the Java language. First, the Java grammar has
been extended to allow annotations on types in many language constructs, forming
the basis for novel static analysis tools such as the Checker Framework. This
feature was specified by JSR 308, Annotations on Java Types,led by Michael Ernst
with an Expert Group of myself, Doug Lea, and Srikanth Sankaran. The changes
involved in this specification were wide-ranging, and the unstinting efforts of
Michael Ernst and Werner Dietl over many years are warmly recognized. Second,
annotations may be "repeated" on a language construct, to the great benefit of APIs
that model domain-specific configuration with annotation types. Michael Keith and
Bill Shannon in Java EE initiated and guided this feature.

Many colleagues in the Java Platform Group at Oracle have provided valuable
support to this specification: Leonid Arbouzov, Mandy Chung, Joe Darcy, Robert
Field, Joel Borggrén-Franck, Sonali Goel, Jon Gibbons, Jeannette Hung, Stuart
Marks, Eric McCorkle, Matherey Nunez, Mark Reinhold, Vicente Romero, John
Rose, Georges Saab, Steve Sides, Bernard Traversat, and Michel Trudeau.

Perhaps the greatest acknowledgement must go to the compiler engineers who
turn the specification into real software. Maurizio Cimadamore at Oracle worked
heroically from the earliest days on the design of lambda expressions and their
implementation in javac. Support for Java SE 8 features in Eclipse was contributed
by Jayaprakash Arthanareeswaran, Shankha Banerjee, Anirban Chakraborty,
Andrew Clement, Stephan Herrmann, Markus Keller, Jesper Mgller, Manoj Palat,
Srikanth Sankaran, and Olivier Thomann; and in IntelliJ by Anna Kozlova, Alexey
Kudravtsev, and Roman Shevchenko. They deserve the thanks of the entire Java
community.

Java SE 8 is a renaissance for the Java language. While some search for the
"next great language", we believe that programming in Java is more exciting and
productive than ever. We hope that it continues to wear well for you.

Alex Buckley
Santa Clara, California

March, 2014



CHAPTER 1

Introduction

THE Java® programming language is a general-purpose, concurrent, class-
based, object-oriented language. It is designed to be simple enough that many
programmers can achieve fluency in the language. The Java programming language
is related to C and C++ but is organized rather differently, with a number of aspects
of C and C++ omitted and a few ideas from other languages included. It is intended
to be a production language, not a research language, and so, as C. A. R. Hoare
suggested in his classic paper on language design, the design has avoided including
new and untested features.

The Java programming language is strongly and statically typed. This specification
clearly distinguishes between the compile-time errors that can and must be detected
at compile time, and those that occur at run time. Compile time normally consists
of translating programs into a machine-independent byte code representation.
Run-time activities include loading and linking of the classes needed to execute
a program, optional machine code generation and dynamic optimization of the
program, and actual program execution.

The Java programming language is a relatively high-level language, in that details
of the machine representation are not available through the language. It includes
automatic storage management, typically using a garbage collector, to avoid
the safety problems of explicit deallocation (as in C's free or C++'s delete).
High-performance garbage-collected implementations can have bounded pauses to
support systems programming and real-time applications. The language does not
include any unsafe constructs, such as array accesses without index checking, since
such unsafe constructs would cause a program to behave in an unspecified way.

The Java programming language is normally compiled to the bytecode instruction
set and binary format defined in The Java Virtual Machine Specification, Java SE
8 Edition.
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1.1 Organization of the Specification

Chapter 2 describes grammars and the notation used to present the lexical and
syntactic grammars for the language.

Chapter 3 describes the lexical structure of the Java programming language, which
is based on C and C++. The language is written in the Unicode character set. It
supports the writing of Unicode characters on systems that support only ASCII.

Chapter 4 describes types, values, and variables. Types are subdivided into
primitive types and reference types.

The primitive types are defined to be the same on all machines and in all
implementations, and are various sizes of two's-complement integers, single- and
double-precision IEEE 754 standard floating-point numbers, a boolean type, and
a Unicode character char type. Values of the primitive types do not share state.

Reference types are the class types, the interface types, and the array types. The
reference types are implemented by dynamically created objects that are either
instances of classes or arrays. Many references to each object can exist. All objects
(including arrays) support the methods of the class object, which is the (single)
root of the class hierarchy. A predefined string class supports Unicode character
strings. Classes exist for wrapping primitive values inside of objects. In many
cases, wrapping and unwrapping is performed automatically by the compiler (in
which case, wrapping is called boxing, and unwrapping is called unboxing). Class
and interface declarations may be generic, that is, they may be parameterized by
other reference types. Such declarations may then be invoked with specific type
arguments.

Variables are typed storage locations. A variable of a primitive type holds a value
of that exact primitive type. A variable of a class type can hold a null reference or
a reference to an object whose type is that class type or any subclass of that class
type. A variable of an interface type can hold a null reference or a reference to an
instance of any class that implements the interface. A variable of an array type can
hold a null reference or a reference to an array. A variable of class type object can
hold a null reference or a reference to any object, whether class instance or array.

Chapter 5 describes conversions and numeric promotions. Conversions change the
compile-time type and, sometimes, the value of an expression. These conversions
include the boxing and unboxing conversions between primitive types and
reference types. Numeric promotions are used to convert the operands of a numeric
operator to a common type where an operation can be performed. There are no
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loopholes in the language; casts on reference types are checked at run time to ensure
type safety.

Chapter 6 describes declarations and names, and how to determine what names
mean (denote). The language does not require types or their members to be declared
before they are used. Declaration order is significant only for local variables, local
classes, and the order of initializers of fields in a class or interface.

The Java programming language provides control over the scope of names
and supports limitations on external access to members of packages, classes,
and interfaces. This helps in writing large programs by distinguishing the
implementation of a type from its users and those who extend it. Recommended
naming conventions that make for more readable programs are described here.

Chapter 7 describes the structure of a program, which is organized into packages
similar to the modules of Modula. The members of a package are classes, interfaces,
and subpackages. Packages are divided into compilation units. Compilation units
contain type declarations and can import types from other packages to give them
short names. Packages have names in a hierarchical name space, and the Internet
domain name system can usually be used to form unique package names.

Chapter 8 describes classes. The members of classes are classes, interfaces, fields
(variables) and methods. Class variables exist once per class. Class methods operate
without reference to a specific object. Instance variables are dynamically created
in objects that are instances of classes. Instance methods are invoked on instances
of classes; such instances become the current object this during their execution,
supporting the object-oriented programming style.

Classes support single implementation inheritance, in which the implementation
of each class is derived from that of a single superclass, and ultimately from the
class object. Variables of a class type can reference an instance of that class or of
any subclass of that class, allowing new types to be used with existing methods,
polymorphically.

Classes support concurrent programming with synchronized methods. Methods
declare the checked exceptions that can arise from their execution, which allows
compile-time checking to ensure that exceptional conditions are handled. Objects
candeclare a finalize method that will be invoked before the objects are discarded
by the garbage collector, allowing the objects to clean up their state.

For simplicity, the language has neither declaration "headers" separate from the
implementation of a class nor separate type and class hierarchies.

1.1
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A special form of classes, enums, support the definition of small sets of values and
their manipulation in a type safe manner. Unlike enumerations in other languages,
enums are objects and may have their own methods.

Chapter 9 describes interface types, which declare a set of abstract methods,
member types, and constants. Classes that are otherwise unrelated can implement
the same interface type. A variable of an interface type can contain a reference
to any object that implements the interface. Multiple interface inheritance is
supported.

Annotation types are specialized interfaces used to annotate declarations. Such
annotations are not permitted to affect the semantics of programs in the Java
programming language in any way. However, they provide useful input to various
tools.

Chapter 10 describes arrays. Array accesses include bounds checking. Arrays are
dynamically created objects and may be assigned to variables of type object. The
language supports arrays of arrays, rather than multidimensional arrays.

Chapter 11 describes exceptions, which are nonresuming and fully integrated with
the language semantics and concurrency mechanisms. There are three kinds of
exceptions: checked exceptions, run-time exceptions, and errors. The compiler
ensures that checked exceptions are properly handled by requiring that a method
or constructor can result in a checked exception only if the method or constructor
declares it. This provides compile-time checking that exception handlers exist, and
aids programming in the large. Most user-defined exceptions should be checked
exceptions. Invalid operations in the program detected by the Java Virtual Machine
result in run-time exceptions, such as NullPointerException. Errors result from
failures detected by the Java Virtual Machine, such as outofMemoryError. Most
simple programs do not try to handle errors.

Chapter 12 describes activities that occur during execution of a program. A
program is normally stored as binary files representing compiled classes and
interfaces. These binary files can be loaded into a Java Virtual Machine, linked to
other classes and interfaces, and initialized.

After initialization, class methods and class variables may be used. Some classes
may be instantiated to create new objects of the class type. Objects that are class
instances also contain an instance of each superclass of the class, and object
creation involves recursive creation of these superclass instances.

When an object is no longer referenced, it may be reclaimed by the garbage
collector. If an object declares a finalizer, the finalizer is executed before the object
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is reclaimed to give the object a last chance to clean up resources that would not
otherwise be released. When a class is no longer needed, it may be unloaded.

Chapter 13 describes binary compatibility, specifying the impact of changes to
types on other types that use the changed types but have not been recompiled. These
considerations are of interest to developers of types that are to be widely distributed,
in a continuing series of versions, often through the Internet. Good program
development environments automatically recompile dependent code whenever a
type is changed, so most programmers need not be concerned about these details.

Chapter 14 describes blocks and statements, which are based on C and C++.
The language has no goto statement, but includes labeled break and continue
statements. Unlike C, the Java programming language requires boolean (or
Boolean) expressions in control-flow statements, and does not convert types to
boolean implicitly (except through unboxing), in the hope of catching more errors
at compile time. A synchronized statement provides basic object-level monitor
locking. A try statement can include catch and £inally clauses to protect against
non-local control transfers.

Chapter 15 describes expressions. This document fully specifies the (apparent)
order of evaluation of expressions, for increased determinism and portability.
Overloaded methods and constructors are resolved at compile time by picking the
most specific method or constructor from those which are applicable.

Chapter 16 describes the precise way in which the language ensures that
local variables are definitely set before use. While all other variables are
automatically initialized to a default value, the Java programming language does
not automatically initialize local variables in order to avoid masking programming
errors.

Chapter 17 describes the semantics of threads and locks, which are based on
the monitor-based concurrency originally introduced with the Mesa programming
language. The Java programming language specifies a memory model for shared-
memory multiprocessors that supports high-performance implementations.

Chapter 18 describes a variety of type inference algorithms used to test applicability
of generic methods and to infer types in a generic method invocation.

Chapter 19 presents a syntactic grammar for the language.

1.1
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1.2 Example Programs

Most of the example programs given in the text are ready to be executed and are
similar in form to:

class Test {
public static void main(String[] args) {
for (int i = 0; i < args.length; i++)
System.out.print(i == 0 ? args[i]
System.out.println();

+ args[i]);

}

On a machine with the Oracle JDK installed, this class, stored in the file Test . java,
can be compiled and executed by giving the commands:

javac Test.java
java Test Hello, world.

producing the output:

Hello, world.

1.3 Notation

Throughout this specification we refer to classes and interfaces drawn from the
Java SE platform API. Whenever we refer to a class or interface (other than those
declared in an example) using a single identifier N, the intended reference is to the
class or interface named N in the package java.lang. We use the canonical name
(§6.7) for classes or interfaces from packages other than java.lang.

Non-normative information, designed to clarify the specification, is given in
smaller, indented text.

This is non-normative information. It provides intuition, rationale, advice, examples, etc.

The type system of the Java programming language occasionally relies on the
notion of a substitution. The notation [F;:=T;, ..., Fn:=T,] denotes substitution
of F;by rifor 1 =i<n.
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14 Relationship to Predefined Classes and Interfaces

As noted above, this specification often refers to classes of the Java SE
platform API. In particular, some classes have a special relationship with
the Java programming language. Examples include classes such as object,
Class, ClassLoader, String, Thread, and the classes and interfaces in package
java.lang.reflect, among others. This specification constrains the behavior of
such classes and interfaces, but does not provide a complete specification for them.
The reader is referred to the Java SE platform API documentation.

Consequently, this specification does not describe reflection in any detail.
Many linguistic constructs have analogs in the Core Reflection API
(java.lang.reflect) and the Language Model API (javax.lang.model), but
these are generally not discussed here. For example, when we list the ways in which
an object can be created, we generally do not include the ways in which the Core
Reflection API can accomplish this. Readers should be aware of these additional
mechanisms even though they are not mentioned in the text.

1.5 Feedback

Readers are invited to report technical errors and ambiguities in The Java®
Language Specification to j1ls-jvms-spec-comments@openjdk.java.net.

Questions concerning the behavior of javac (the reference compiler for the Java
programming language), and in particular its conformance to this specification,
may be sent to compiler-dev@openjdk.java.net.
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CHAPTER2

Grammars

THIS chapter describes the context-free grammars used in this specification to
define the lexical and syntactic structure of a program.

2.1 Context-Free Grammars

A context-free grammar consists of a number of productions. Each production has
an abstract symbol called a nonterminal as its left-hand side, and a sequence of
one or more nonterminal and terminal symbols as its right-hand side. For each
grammar, the terminal symbols are drawn from a specified alphabet.

Starting from a sentence consisting of a single distinguished nonterminal, called the
goal symbol, a given context-free grammar specifies a language, namely, the set of
possible sequences of terminal symbols that can result from repeatedly replacing
any nonterminal in the sequence with a right-hand side of a production for which
the nonterminal is the left-hand side.

2.2 The Lexical Grammar

A lexical grammar for the Java programming language is given in §3 (Lexical
Structure). This grammar has as its terminal symbols the characters of the Unicode
character set. It defines a set of productions, starting from the goal symbol Input
(§3.5), that describe how sequences of Unicode characters (§3.1) are translated into
a sequence of input elements (§3.5).

These input elements, with white space (§3.6) and comments (§3.7) discarded,
form the terminal symbols for the syntactic grammar for the Java programming
language and are called tokens (§3.5). These tokens are the identifiers (§3.8),
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keywords (§3.9), literals (§3.10), separators (§3.11), and operators (§3.12) of the
Java programming language.

2.3 The Syntactic Grammar

The syntactic grammar for the Java programming language is given in Chapters
4, 6-10, 14, and 15. This grammar has tokens defined by the lexical grammar
as its terminal symbols. It defines a set of productions, starting from the goal
symbol CompilationUnit (§7.3), that describe how sequences of tokens can form
syntactically correct programs.

For convenience, the syntactic grammar is presented all together in Chapter 19.

24 Grammar Notation

Terminal symbols are shown in fixed width font in the productions of the lexical
and syntactic grammars, and throughout this specification whenever the text is
directly referring to such a terminal symbol. These are to appear in a program
exactly as written.

Nonterminal symbols are shown in italic type. The definition of a nonterminal is
introduced by the name of the nonterminal being defined, followed by a colon. One
or more alternative definitions for the nonterminal then follow on succeeding lines.

For example, the syntactic production:

IfThenStatement:
if ( Expression ) Statement

states that the nonterminal [fThenStatement represents the token if, followed by a left
parenthesis token, followed by an Expression, followed by a right parenthesis token,
followed by a Statement.

The syntax {x} on the right-hand side of a production denotes zero or more
occurrences of x.

For example, the syntactic production:

ArgumentList:
Argument {, Argument}
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states that an ArgumentList consists of an Argument, followed by zero or more occurrences
of a comma and an Argument. The result is that an ArgumentList may contain any positive
number of arguments.

The syntax [x] on the right-hand side of a production denotes zero or one
occurrences of x. That is, x is an optional symbol. The alternative which contains
the optional symbol actually defines two alternatives: one that omits the optional
symbol and one that includes it.

This means that:

BreakStatement:
break [ldentifier] ;

is a convenient abbreviation for:

BreakStatement:
break ;
break Identifier ;

As another example, it means that:

BasicForStatement:
for ( [Forlnit] ; [Expression] ; [ForUpdate] ) Statement

is a convenient abbreviation for:

BasicForStatement:
for ( ; [Expression] ; [ForUpdate] ) Statement
for ( Forlnit ; [Expression] ; [ForUpdate] ) Statement

which in turn is an abbreviation for:

BasicForStatement:
for ( ; ; [ForUpdate] ) Statement
for ( ; Expression ; [ForUpdate] ) Statement
for ( Forlnit ; ; [ForUpdate] ) Statement
for ( Forlnit ; Expression ; [ForUpdate] ) Statement

which in turn is an abbreviation for:

24

11
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BasicForStatement:
for ( ; ; ) Statement
for ( ; ; ForUpdate ) Statement
for ( ; Expression ; ) Statement
for ( ; Expression ; ForUpdate ) Statement
for ( Forlnit ; ; ) Statement
for ( Forlnit ; ; ForUpdate ) Statement
for ( Forlnit ; Expression ; ) Statement
for ( Forlnit ; Expression ; ForUpdate ) Statement

so the nonterminal BasicForStatement actually has eight alternative right-hand sides.

A very long right-hand side may be continued on a second line by clearly indenting
the second line.

For example, the syntactic grammar contains this production:

NormalClassDeclaration:
{ClassModifier} class Identifier [TypeParameters]
[Superclass] [Superinterfaces] ClassBody

which defines one right-hand side for the nonterminal NormalClassDeclaration.

The phrase (one of) on the right-hand side of a production signifies that each of the
terminal symbols on the following line or lines is an alternative definition.

For example, the lexical grammar contains the production:
ZeroToThree:
(one of)
0123

which is merely a convenient abbreviation for:

ZeroToThree:
0

1
2
3
When an alternative in a production appears to be a token, it represents the sequence
of characters that would make up such a token.
Thus, the production:

BooleanlLiteral:

(one of)

true false

12
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is shorthand for:

BooleanlLiteral:
true
false

The right-hand side of a production may specify that certain expansions are not
permitted by using the phrase "but not" and then indicating the expansions to be
excluded.

For example:

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

Finally, a few nonterminals are defined by a narrative phrase in roman type where
it would be impractical to list all the alternatives.

For example:

RawlnputCharacter:
any Unicode character

13






CHAPTER 3

ILexical Structure

THIS chapter specifies the lexical structure of the Java programming language.

Programs are written in Unicode (§3.1), but lexical translations are provided (§3.2)
so that Unicode escapes (§3.3) can be used to include any Unicode character using
only ASCII characters. Line terminators are defined (§3.4) to support the different
conventions of existing host systems while maintaining consistent line numbers.

The Unicode characters resulting from the lexical translations are reduced to a
sequence of input elements (§3.5), which are white space (§3.6), comments (§3.7),
and tokens. The tokens are the identifiers (§3.8), keywords (§3.9), literals (§3.10),
separators (§3.11), and operators (§3.12) of the syntactic grammar.

3.1 Unicode

Programs are written using the Unicode character set. Information about this
character set and its associated character encodings may be found at http://

www.unicode.org/.

The Java SE platform tracks the Unicode Standard as it evolves. The precise version
of Unicode used by a given release is specified in the documentation of the class
Character.

Versions of the Java programming language prior to JDK 1.1 used Unicode 1.1.5. Upgrades
to newer versions of the Unicode Standard occurred in JDK 1.1 (to Unicode 2.0),JDK 1.1.7
(to Unicode 2.1), Java SE 1.4 (to Unicode 3.0), Java SE 5.0 (to Unicode 4.0), Java SE 7 (to
Unicode 6.0), and Java SE 8 (to Unicode 6.2).

The Unicode standard was originally designed as a fixed-width 16-bit character
encoding. It has since been changed to allow for characters whose representation
requires more than 16 bits. The range of legal code points is now U+0000
to U+10FFFF, using the hexadecimal U+n notation. Characters whose code

15
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points are greater than U+FFFF are called supplementary characters. To represent
the complete range of characters using only 16-bit units, the Unicode standard
defines an encoding called UTF-16. In this encoding, supplementary characters are
represented as pairs of 16-bit code units, the first from the high-surrogates range,
(U+D800 to U+DBFF), the second from the low-surrogates range (U+DC00 to U
+DFFF). For characters in the range U+0000 to U+FFFF, the values of code points
and UTF-16 code units are the same.

The Java programming language represents text in sequences of 16-bit code units,
using the UTF-16 encoding.

Some APIs of the Java SE platform, primarily in the Character class, use 32-bit integers
to represent code points as individual entities. The Java SE platform provides methods to
convert between 16-bit and 32-bit representations.

This specification uses the terms code point and UTF-16 code unit where the
representation is relevant, and the generic term character where the representation
is irrelevant to the discussion.

Except for comments (§3.7), identifiers, and the contents of character and string
literals (§3.10.4, §3.10.5), all input elements (§3.5) in a program are formed
only from ASCII characters (or Unicode escapes (§3.3) which result in ASCII
characters).

ASCII (ANSI X3.4) is the American Standard Code for Information Interchange. The first
128 characters of the Unicode UTF-16 encoding are the ASCII characters.

3.2 Lexical Translations

A raw Unicode character stream is translated into a sequence of tokens, using the
following three lexical translation steps, which are applied in turn:

1. A translation of Unicode escapes (§3.3) in the raw stream of Unicode characters
to the corresponding Unicode character. A Unicode escape of the form \uxxxx,
where xxxx is a hexadecimal value, represents the UTF-16 code unit whose
encoding is xxxx. This translation step allows any program to be expressed
using only ASCII characters.

2. A translation of the Unicode stream resulting from step 1 into a stream of input
characters and line terminators (§3.4).

3. A translation of the stream of input characters and line terminators resulting
from step 2 into a sequence of input elements (§3.5) which, after white space
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(§3.6) and comments (§3.7) are discarded, comprise the tokens (§3.5) that are
the terminal symbols of the syntactic grammar (§2.3).

The longest possible translation is used at each step, even if the result does not
ultimately make a correct program while another lexical translation would. There
is one exception: if lexical translation occurs in a type context (§4.11) and the
input stream has two or more consecutive > characters that are followed by a non->
character, then each > character must be translated to the token for the numerical
comparison operator >.

The input characters a--b are tokenized (§3.5) as a, --, b, which is not part of any
grammatically correct program, even though the tokenization a, -, -, b could be part of a
grammatically correct program.

Without the rule for > characters, two consecutive > brackets in a type such as
List<List<String>> would be tokenized as the signed right shift operator >>, while
three consecutive > brackets in a type such as List<List<List<String>>> would be
tokenized as the unsigned right shift operator >>>. Worse, the tokenization of four or more
consecutive > brackets in a type such as List<List<List<List<String>>>> would be
ambiguous, as various combinations of >, >>, and >>> tokens could represent the >>>>
characters.

3.3 Unicode Escapes

A compiler for the Java programming language ("Java compiler") first recognizes
Unicode escapes in its input, translating the ASCII characters \u followed by four
hexadecimal digits to the UTF-16 code unit (§3.1) for the indicated hexadecimal
value, and passing all other characters unchanged. Representing supplementary
characters requires two consecutive Unicode escapes. This translation step results
in a sequence of Unicode input characters.

UnicodelnputCharacter:
UnicodeEscape
RawlInputCharacter

UnicodeEscape:
\ UnicodeMarker HexDigit HexDigit HexDigit HexDigit

UnicodeMarker:
ufu}

3.3
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HexDigit:
(one of)

0123456789 abcdefABCDETF

RawlInputCharacter:
any Unicode character

The \, u, and hexadecimal digits here are all ASCII characters.

In addition to the processing implied by the grammar, for each raw input character
that is a backslash \, input processing must consider how many other \ characters
contiguously precede it, separating it from a non-\ character or the start of the input
stream. If this number is even, then the \ is eligible to begin a Unicode escape; if
the number is odd, then the \ is not eligible to begin a Unicode escape.

For example, the raw input "\\u2122=\u2122" results in the eleven characters " \ \ u
212 2 =™ "(\u2122 is the Unicode encoding of the character ™).

If an eligible \ is not followed by u, then it is treated as a RawInputCharacter and
remains part of the escaped Unicode stream.

If an eligible \ is followed by u, or more than one u, and the last u is not followed
by four hexadecimal digits, then a compile-time error occurs.

The character produced by a Unicode escape does not participate in further Unicode
escapes.

For example, the raw input \u005cu005a results in the six characters \ u 0 0 5 a,
because 005c is the Unicode value for \. It does not result in the character Z, which is
Unicode character 005a, because the \ that resulted from the \u005c is not interpreted as
the start of a further Unicode escape.

The Java programming language specifies a standard way of transforming a
program written in Unicode into ASCII that changes a program into a form that
can be processed by ASCII-based tools. The transformation involves converting
any Unicode escapes in the source text of the program to ASCII by adding an extra
u - for example, \uxxxx becomes \uuxxxx - while simultaneously converting non-
ASCII characters in the source text to Unicode escapes containing a single u each.

This transformed version is equally acceptable to a Java compiler and represents
the exact same program. The exact Unicode source can later be restored from this
ASCII form by converting each escape sequence where multiple u's are present to a
sequence of Unicode characters with one fewer u, while simultaneously converting
each escape sequence with a single u to the corresponding single Unicode character.
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A Java compiler should use the \uxxxx notation as an output format to display Unicode
characters when a suitable font is not available.

3.4 Line Terminators

A Java compiler next divides the sequence of Unicode input characters into lines
by recognizing line terminators.

LineTerminator:
the ASCII LF character, also known as "newline"
the ASCII CR character, also known as "return"
the ASCII CR character followed by the ASCII LF character

InputCharacter:
UnicodelnputCharacter but not CR or LF

Lines are terminated by the ASCII characters CR, or LF, or CR LF. The two
characters CR immediately followed by LF are counted as one line terminator, not
two.

A line terminator specifies the termination of the // form of a comment (§3.7).

The lines defined by line terminators may determine the line numbers produced by a Java
compiler.

The result is a sequence of line terminators and input characters, which are the
terminal symbols for the third step in the tokenization process.

3.5 Input Elements and Tokens

The input characters and line terminators that result from escape processing (§3.3)
and then input line recognition (§3.4) are reduced to a sequence of input elements.

Input:
{InputElement} [Sub]

InputElement:
WhiteSpace
Comment
Token

19
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Token:
Identifier
Keyword
Literal
Separator
Operator

Sub:
the ASCII SUB character, also known as "control-Z"

Those input elements that are not white space or comments are tokens. The tokens
are the terminal symbols of the syntactic grammar (§2.3).

White space (§3.6) and comments (§3.7) can serve to separate tokens that, if
adjacent, might be tokenized in another manner. For example, the ASCII characters
- and = in the input can form the operator token -= (§3.12) only if there is no
intervening white space or comment.

As a special concession for compatibility with certain operating systems, the ASCII
SUB character (\u001a, or control-Z) is ignored if it is the last character in the
escaped input stream.

Consider two tokens x and y in the resulting input stream. If x precedes y, then we
say that x is fo the left of y and that y is fo the right of x.

For example, in this simple piece of code:

class Empty {
}

we say that the } token is to the right of the { token, even though it appears, in this two-
dimensional representation, downward and to the left of the { token. This convention about
the use of the words left and right allows us to speak, for example, of the right-hand operand
of a binary operator or of the left-hand side of an assignment.

3.6 White Space

White space is defined as the ASCII space character, horizontal tab character, form
feed character, and line terminator characters (§3.4).

20
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WhiteSpace:
the ASCII SP character, also known as "space"
the ASCII HT character, also known as "horizontal tab"
the ASCII FF character, also known as "form feed"
LineTerminator

3.7 Comments

There are two kinds of comments:
* /* text */

A traditional comment: all the text from the ASCII characters /* to the ASCII
characters */ is ignored (as in C and C++).

e // text

An end-of-line comment: all the text from the ASCII characters // to the end of
the line is ignored (as in C++).

Comment:
TraditionalComment
EndOfLineComment

TraditionalComment:
/ * CommentTail

CommentTail:
* CommentTailStar
NotStar CommentTail

CommentTailStar:
/
* CommentTailStar
NotStarNotSlash CommentTail

NotStar:
InputCharacter but not *
LineTerminator

3.7
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NotStarNotSlash:
InputCharacter but not * or /
LineTerminator

EndOfLineComment:
/ / {InputCharacter}

These productions imply all of the following properties:
* Comments do not nest.
* /+ and */ have no special meaning in comments that begin with //.

* // has no special meaning in comments that begin with /* or /*x*.
As a result, the following text is a single complete comment:
/* this comment /* // /** ends here: */

The lexical grammar implies that comments do not occur within character literals
(§3.10.4) or string literals (§3.10.5).

3.8 Identifiers

An identifier is an unlimited-length sequence of Java letters and Java digits, the
first of which must be a Java letter.

Identifier:
IdentifierChars but not a Keyword or BooleanLiteral or NullLiteral

IdentifierChars:
JavaLetter {JavaLetterOrDigit}

JavaLetter:
any Unicode character that is a "Java letter"

JavaLetterOrDigit:
any Unicode character that is a "Java letter-or-digit"

A "Java letter" is a character for which the method
Character.isJavaldentifierStart(int) returns true.
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A

"Java letter-or-digit" is a character for which the method

Character.isJavaldentifierPart(int) returns true.

Letters and digits may be drawn from the entire Unicode character set, which
supports most writing scripts in use in the world today, including the large sets for
Chinese, Japanese, and Korean. This allows programmers to use identifiers in their

The "Java letters" include uppercase and lowercase ASCII Latin letters A-Z (\u0041-
\u005a),and a-z (\u0061-\u007a), and, for historical reasons, the ASCII underscore (_,
or \u005£) and dollar sign ($, or \u0024). The $ sign should be used only in mechanically
generated source code or, rarely, to access pre-existing names on legacy systems.

The "Java digits" include the ASCII digits 0-9 (\u0030-\u0039).

programs that are written in their native languages.

An identifier cannot have the same spelling (Unicode character sequence) as a
keyword (§3.9), boolean literal (§3.10.3), or the null literal (§3.10.7), or a compile-

time error occurs.

Two identifiers are the same only if they are identical, that is, have the same
Unicode character for each letter or digit. Identifiers that have the same external

appearance may yet be different.

For example, the identifiers consisting of the single letters LATIN CAPITAL LETTER
A (a, \u0041), LATIN SMALL LETTER A (a, \u0061), GREEK CAPITAL
LETTER ALPHA (a, \u0391), CYRILLIC SMALL LETTER A (a, \u0430) and
MATHEMATICAL BOLD ITALIC SMALL A (a, \ud835\udc82) are all different.

Unicode composite characters are different from their canonical equivalent decomposed
characters. For example,a LATIN CAPITAL LETTER A ACUTE (&, \u00c1) is different
from a LATIN CAPITAL LETTER A (a, \u0041) immediately followed by a NON-
SPACING ACUTE (-, \u0301) in identifiers. See The Unicode Standard, Section 3.11
"Normalization Forms".

Examples of identifiers are:
®* String
e i3

opeTn
* MAX VALUE

* isLetterOrDigit

Identifiers

3.8
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3.9 Keywords

LEXICAL STRUCTURE

50 character sequences, formed from ASCII letters, are reserved for use as
keywords and cannot be used as identifiers (§3.8).

Keyword:
(one of)
abstract continue for
assert default if
boolean do goto
break double implements
byte else import
case enum instanceof
catch extends int
char final interface
class finally long
const float native

new
package
private
protected
public
return
short
static
strictfp

super

switch
synchronized
this

throw

throws
transient
try

void
volatile
while

The keywords const and goto are reserved, even though they are not currently used.
This may allow a Java compiler to produce better error messages if these C++ keywords

incorrectly appear in programs.

While true and £alse might appear to be keywords, they are technically boolean literals
(§3.10.3). Similarly, while null might appear to be a keyword, it is technically the null

literal (§3.10.7).

3.10 Literals

A literal is the source code representation of a value of a primitive type (§4.2), the

String type (§4.3.3), or the null type (§4.1).

Literal:
IntegerLiteral
FloatingPointLiteral
BooleanLiteral
CharacterLiteral
StringLiteral
NullLiteral
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3.10.1 Integer Literals

An integer literal may be expressed in decimal (base 10), hexadecimal (base 16),
octal (base 8), or binary (base 2).

IntegerLiteral:
DecimallntegerLiteral
HexlIntegerLiteral
OctallntegerLiteral
BinarylntegerLiteral

DecimallntegerLiteral:
DecimalNumeral [IntegerTypeSuffix]

HexIntegerLiteral:
HexNumeral [IntegerTypeSuffix]

OctallntegerLiteral:
OctalNumeral [IntegerTypeSuffix]

BinarylntegerLiteral:
BinaryNumeral [IntegerTypeSuffix]

IntegerTypeSuffix:
(one of)

1L

An integer literal is of type long if it is suffixed with an ASCII letter L. or 1 (ell);
otherwise it is of type int (§4.2.1).

The suffix L is preferred, because the letter 1 (ell) is often hard to distinguish from the digit
1 (one).

Underscores are allowed as separators between digits that denote the integer.

In a hexadecimal or binary literal, the integer is only denoted by the digits after
the 0x or 0b characters and before any type suffix. Therefore, underscores may not
appear immediately after 0x or 0b, or after the last digit in the numeral.

In a decimal or octal literal, the integer is denoted by all the digits in the literal
before any type suffix. Therefore, underscores may not appear before the first digit
or after the last digit in the numeral. Underscores may appear after the initial 0 in
an octal numeral (since 0 is a digit that denotes part of the integer) and after the
initial non-zero digit in a non-zero decimal literal.

3.10
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A decimal numeral is either the single ASCII digit 0, representing the integer zero,
or consists of an ASCII digit from 1 to 9 optionally followed by one or more ASCII
digits from 0 to 9 interspersed with underscores, representing a positive integer.

DecimalNumeral:
0
NonZeroDigit [Digits]
NonZeroDigit Underscores Digits

NonZeroDigit:
(one of)

12345672829

Digits:

Digit

Digit [DigitsAndUnderscores] Digit
Digit:

0

NonZeroDigit

DigitsAndUnderscores:
DigitOrUnderscore {DigitOrUnderscore}

DigitOrUnderscore:
Digit

Underscores:

_{
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A hexadecimal numeral consists of the leading ASCII characters 0x or 0x followed
by one or more ASCII hexadecimal digits interspersed with underscores, and can
represent a positive, zero, or negative integer.

Hexadecimal digits with values 10 through 15 are represented by the ASCII letters
a through £ or a through F, respectively; each letter used as a hexadecimal digit
may be uppercase or lowercase.

HexNumeral:
0 x HexDigits
0 X HexDigits

HexDigits:
HexDigit
HexDigit [HexDigitsAndUnderscores ] HexDigit

HexDigit:
(one of)

0123456789abcdefABCDETF

HexDigitsAndUnderscores:
HexDigitOrUnderscore { HexDigitOrUnderscore}

HexDigitOrUnderscore:
HexDigit

The HexDigit production above comes from §3.3.

3.10
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An octal numeral consists of an ASCII digit o followed by one or more of the ASCII
digits o through 7 interspersed with underscores, and can represent a positive, zero,
or negative integer.

OctalNumeral:
0 OctalDigits
0 Underscores OctalDigits

OctalDigits:
OctalDigit
OctalDigit [OctalDigitsAndUnderscores] OctalDigit

OctalDigit:
(one of)

01234567

OctalDigitsAndUnderscores:
OctalDigitOrUnderscore { OctalDigitOrUnderscore}

OctalDigitOrUnderscore:
OctalDigit

Note that octal numerals always consist of two or more digits, as 0 alone is always
considered to be a decimal numeral - not that it matters much in practice, for the numerals
0, 00, and 0x0 all represent exactly the same integer value.
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A binary numeral consists of the leading ASCII characters 0b or 0B followed by one
or more of the ASCII digits 0 or 1 interspersed with underscores, and can represent
a positive, zero, or negative integer.

BinaryNumeral:
0 b BinaryDigits
0 B BinaryDigits

BinaryDigits:
BinaryDigit
BinaryDigit [ BinaryDigitsAndUnderscores] BinaryDigit

BinaryDigit:
(one of)

01

BinaryDigitsAndUnderscores:
BinaryDigitOrUnderscore { BinaryDigitOrUnderscore}

BinaryDigitOrUnderscore:
BinaryDigit

3.10

29



3.10

30

Literals LEXICAL STRUCTURE

The largest decimal literal of type int is 2147483648 23h.

All decimal literals from 0 to 2147483647 may appear anywhere an int literal may
appear. The decimal literal 2147483648 may appear only as the operand of the
unary minus operator - (§15.15.4).

It is a compile-time error if the decimal literal 2147483648 appears anywhere other
than as the operand of the unary minus operator; or if a decimal literal of type int
is larger than 2147483648 (231).

The largest positive hexadecimal, octal, and binarz literals of type int - each of
which represents the decimal value 2147483647 (2 1) - are respectively:

* Ox7fff ffff,
* 0177_7777_7777,and
®* 0b0111 1111 1111 1111 1111 1111 1111 1111

The most negative hexadecimal, octal, and binary literals of type int - each of
which represents the decimal value -2147483648 (-23) - are respectively:

* 0x8000_0000,
* 0200 0000 0000, and
* 0b1000_0000_0000_0000_0000_0000_0000_0000

The following hexadecimal, octal, and binary literals represent the decimal value
-1:

* Oxffff ffff,
® 0377_7777_7777,and
® 0b1111 1111 1111 1111 1111 1111 1111 1111

It is a compile-time error if a hexadecimal, octal, or binary int literal does not fit
in 32 bits.

The largest decimal literal of type long is 9223372036854775808L (263).

All decimal literals from 0L to 9223372036854775807L may appear anywhere a
long literal may appear. The decimal literal 9223372036854775808L may appear
only as the operand of the unary minus operator - (§15.15.4).

It is a compile-time error if the decimal literal 9223372036854775808L appears
anywhere other than as the operand of the unary minus operator; or if a decimal
literal of type long is larger than 9223372036854775808L (263).
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The largest positive hexadecimal, octal, and binary literals of type long - each
of which represents the decimal value 9223372036854775807L (263-1) - are
respectively:

* Ox7fff ffff ffff fEffL,
® 07_7777_7777_7777_7777_7777L, and

e 0b0111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111L

The most negative hexadecimal, octal, and binary literals of type long - each
of which represents the decimal value -9223372036854775808L (-263) - are
respectively:

* 0x8000_0000_0000_0000L, and
* 010_0000_0000_0000_0000_0000L, and

e 0b1000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000L

The following hexadecimal, octal, and binary literals represent the decimal value
-1L:

o Oxffff ffff ffff fEFfL,

® 017 _7777_7777_7777_7777_7777L, and

e Obl111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111 1111L

It is a compile-time error if a hexadecimal, octal, or binary long literal does not
fit in 64 bits.

Examples of int literals:
0 2 0372 0xDada_Cafe 1996 0x00_FF_ 00 FF
Examples of long literals:

01 0777L 0x100000000L 2_147_483_648L 0xCOBOL

3.10.2 Floating-Point Literals

A floating-point literal has the following parts: a whole-number part, a decimal or
hexadecimal point (represented by an ASCII period character), a fraction part, an
exponent, and a type suffix.

A floating-point literal may be expressed in decimal (base 10) or hexadecimal (base
16).

3.10
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For decimal floating-point literals, at least one digit (in either the whole number or
the fraction part) and either a decimal point, an exponent, or a float type suffix are
required. All other parts are optional. The exponent, if present, is indicated by the
ASCII letter e or E followed by an optionally signed integer.

For hexadecimal floating-point literals, at least one digit is required (in either the
whole number or the fraction part), and the exponent is mandatory, and the float
type suffix is optional. The exponent is indicated by the ASCII letter p or p followed
by an optionally signed integer.

Underscores are allowed as separators between digits that denote the whole-number
part, and between digits that denote the fraction part, and between digits that denote
the exponent.

FloatingPointLiteral:
DecimalFloating PointLiteral
HexadecimalFloating PointLiteral

DecimalFloatingPointLiteral:
Digits . [Digits] [ExponentPart] [FloatTypeSuffix]
. Digits [ExponentPart] [FloatTypeSuffix]
Digits ExponentPart [FloatTypeSuffix]
Digits [ExponentPart] FloatTypeSuffix

ExponentPart:
Exponentindicator SignedInteger

Exponentindicator:

(one of)

e E

SignedInteger:
[Sign] Digits

Sign:
(one of)

+ -

FloatTypeSuffix:
(one of)

£f FdD
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HexadecimalFloating PointLiteral:
HexSignificand BinaryExponent [FloatTypeSuffix]

HexSignificand:
HexNumeral [.]
0 x [HexDigits] . HexDigits
0 x [HexDigits] . HexDigits

BinaryExponent:
BinaryExponentIndicator SignedInteger

BinaryExponentlndicator:

(one of)

p P

A floating-point literal is of type £loat if it is suffixed with an ASCII letter F or £;
otherwise its type is double and it can optionally be suffixed with an ASCII letter
pDord (§4.2.3).

The elements of the types float and double are those values that can be
represented using the IEEE 754 32-bit single-precision and 64-bit double-precision
binary floating-point formats, respectively.

The details of proper input conversion from a Unicode string representation of a floating-
point number to the internal IEEE 754 binary floating-point representation are described
for the methods valueOf of class Float and class Double of the package java.lang.

The largest positive finite literal of type float is 3.4028235e38¢.

The smallest positive finite non-zero literal of type float iS 1.40e-45¢f.

The largest positive finite literal of type double is 1.7976931348623157e308.
The smallest positive finite non-zero literal of type double is 4.9e-324.

It is a compile-time error if a non-zero floating-point literal is too large, so that on
rounded conversion to its internal representation, it becomes an IEEE 754 infinity.

A program can represent infinities without producing a compile-time error by using
constant expressions such as 1£/0f£ or -1d/0d or by using the predefined constants
POSITIVE INFINITY and NEGATIVE_ INFINITY of the classes Float and Double.

It is a compile-time error if a non-zero floating-point literal is too small, so that, on
rounded conversion to its internal representation, it becomes a zero.

3.10
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A compile-time error does not occur if a non-zero floating-point literal has a small
value that, on rounded conversion to its internal representation, becomes a non-
zero denormalized number.

Predefined constants representing Not-a-Number values are defined in the classes
Float and Double as Float.NaN and Double.NaN.

Examples of float literals:
lelf 2.f .3f 0f 3.14f 6.022137e+23f
Examples of double literals:

lel 2. .3 0.0 3.14 le-9d lel37

3.10.3 Boolean Literals

The boolean type has two values, represented by the boolean literals true and
false, formed from ASCII letters.

BooleanLiteral:

(one of)

true false

A boolean literal is always of type boolean (§4.2.5).

3.104 Character Literals

A character literal is expressed as a character or an escape sequence (§3.10.6),
enclosed in ASCII single quotes. (The single-quote, or apostrophe, character is
\u0027.)

CharacterlLiteral:
' SingleCharacter '
" EscapeSequence '

SingleCharacter:
InputCharacter but not ' or \

See §3.10.6 for the definition of EscapeSequence.

Character literals can only represent UTF-16 code units (§3.1),1.e., they are limited
to values from \u0000 to \uff££. Supplementary characters must be represented
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either as a surrogate pair within a char sequence, or as an integer, depending on
the API they are used with.

A character literal is always of type char (§4.2.1).

It is a compile-time error for the character following the SingleCharacter or
EscapeSequence to be other than a *.

It is a compile-time error for a line terminator (§3.4) to appear after the opening
' and before the closing '.

As specified in §3.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

The following are examples of char literals:

* 'a

. 'y

e \t'

e "\\!

e "\'"!

* '"\u03a9'
* '\uFFFF'
e "\177'

Because Unicode escapes are processed very early, it is not correct to write '\u000a'
for a character literal whose value is linefeed (LF); the Unicode escape \u000a is
transformed into an actual linefeed in translation step 1 (§3.3) and the linefeed becomes a
LineTerminator in step 2 (§3.4), and so the character literal is not valid in step 3. Instead,
one should use the escape sequence '\n' (§3.10.6). Similarly, it is not correct to write
'\u000d" for a character literal whose value is carriage return (CR). Instead, use '\r'.

In C and C++, a character literal may contain representations of more than one character,
but the value of such a character literal is implementation-defined. In the Java programming
language, a character literal always represents exactly one character.

3.10.5 String Literals

A string literal consists of zero or more characters enclosed in double quotes.
Characters may be represented by escape sequences (§3.10.6) - one escape
sequence for characters in the range U+0000 to U+FFFF, two escape sequences
for the UTF-16 surrogate code units of characters in the range U+010000 to U
+10FFFF.

3.10
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StringLiteral:
" {StringCharacter} "

StringCharacter:
InputCharacter but not " or \
EscapeSequence

See §3.10.6 for the definition of EscapeSequence.

A string literal is always of type string (§4.3.3).

It is a compile-time error for a line terminator to appear after the opening " and
before the closing matching ".

As specified in §3.4, the characters CR and LF are never an InputCharacter; each is
recognized as constituting a LineTerminator.

A long string literal can always be broken up into shorter pieces and written as a (possibly
parenthesized) expression using the string concatenation operator + (§15.18.1).

The following are examples of string literals:

// the empty string

AT // a string containing " alone

"This is a string" // a string containing 16 characters

"This is a " + // actually a string-valued constant expression,
"two-line string" // formed from two string literals

Because Unicode escapes are processed very early, it is not correct to write "\u000a"
for a string literal containing a single linefeed (LF); the Unicode escape \u000a is
transformed into an actual linefeed in translation step 1 (§3.3) and the linefeed becomes
a LineTerminator in step 2 (§3.4), and so the string literal is not valid in step 3. Instead,
one should write "\n" (§3.10.6). Similarly, it is not correct to write "\u000d" for a string
literal containing a single carriage return (CR). Instead, use "\r". Finally, it is not possible
to write "\u0022" for a string literal containing a double quotation mark (").

A string literal is a reference to an instance of class string (§4.3.1, §4.3.3).

Moreover, a string literal always refers to the same instance of class string. This
is because string literals - or, more generally, strings that are the values of constant
expressions (§15.28) - are "interned" so as to share unique instances, using the
method string.intern.

Example 3.10.5-1. String Literals
The program consisting of the compilation unit (§7.3):

package testPackage;
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class Test {

Literals

public static void main(String[] args) {

String hello = "Hello", lo = "lo";
System.out.print((hello == "Hello") + " ");
System.out.print((Other.hello == hello) + " ");
System.out.print((other.Other.hello == hello) + " ");
System.out.print((hello == ("Hel"+"lo")) + " ");
System.out.print((hello == ("Hel"+lo)) + " ");
System.out.println(hello == ("Hel"+lo).intern());
}
}
class Other { static String hello = "Hello"; }
and the compilation unit:
package other;
public class Other { public static String hello = "Hello"; }

produces the output:
true true true true false true

This example illustrates six points:

* Literal strings within the same class (§8 (Classes)) in the same package (§7 (Packages))
represent references to the same String object (§4.3.1).

 Literal strings within different classes in the same package represent references to the

same String object.

e Literal strings within different classes in different packages likewise represent references

to the same String object.

» Strings computed by constant expressions (§15.28) are computed at compile time and

then treated as if they were literals.

» Strings computed by concatenation at run time are newly created and therefore distinct.

* The result of explicitly interning a computed string is the same string as any pre-existing

literal string with the same contents.

3.10.6 Escape Sequences for Character and String Literals

The character and string escape sequences allow for the representation of some
nongraphic characters without using Unicode escapes, as well as the single quote,
double quote, and backslash characters, in character literals (§3.10.4) and string

literals (§3.10.5).

3.10
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EscapeSequence:
\ b (backspace BS, Unicode \u0008)
t (horizontal tab HT, Unicode \u0009)
n (linefeed LF, Unicode \u000a)
f (form feed FF, Unicode \u000c)
r (carriage return CR, Unicode \u000d)
" (double quote ", Unicode \u0022)
' (single quote ', Unicode \u0027)
\ (backslash \, Unicode \u005c)
OctalEscape (octal value, Unicode \u0000 to \u00£f)

P

OctalEscape:
\ OctalDigit
\ OctalDigit OctalDigit
\ ZeroToThree OctalDigit OctalDigit

OctalDigit:
(one of)

01234567

ZeroToThree:
(one of)

0123
The OctalDigit production above comes from §3.10.1.

It is a compile-time error if the character following a backslash in an escape
sequence is not an ASCIl b, t,n, £,r, ", ',\,0,1,2,3,4,5,6,0r 7. The Unicode
escape \u is processed earlier (§3.3).

Octal escapes are provided for compatibility with C, but can express only Unicode values
\u0000 through \u00FF, so Unicode escapes are usually preferred.

3.10.7 The Null Literal

The null type has one value, the null reference, represented by the null literal null,
which is formed from ASCII characters.

NullLiteral:
null

A null literal is always of the null type (§4.1).
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3.11 Separators

Twelve tokens, formed from ASCII characters, are the separators (punctuators).

Separator:

(one of)
( ) {0y I ] ; , . ...o@

3.12 Operators

38 tokens, formed from ASCII characters, are the operators.

Operator:

(one of)

= > < ! ~ ? ->

== >= <= I= && || ++ --

+ - * / & | ~ 2 << >> >>>
4= —= *= /= &= |= "= %= <<= >>= >>>=
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39






CHAPTER I

Types, Values, and Variables

THE Java programming language is a statically typed language, which means
that every variable and every expression has a type that is known at compile time.

The Java programming language is also a strongly typed language, because types
limit the values that a variable (§4.12) can hold or that an expression can produce,
limit the operations supported on those values, and determine the meaning of the
operations. Strong static typing helps detect errors at compile time.

The types of the Java programming language are divided into two categories:
primitive types and reference types. The primitive types (§4.2) are the boolean
type and the numeric types. The numeric types are the integral types byte, short,
int, long, and char, and the floating-point types £loat and double. The reference
types (§4.3) are class types, interface types, and array types. There is also a special
null type. An object (§4.3.1) is a dynamically created instance of a class type or a
dynamically created array. The values of a reference type are references to objects.
All objects, including arrays, support the methods of class object (§4.3.2). String
literals are represented by string objects (§4.3.3).

4.1 The Kinds of Types and Values

There are two kinds of types in the Java programming language: primitive types
(§4.2) and reference types (§4.3). There are, correspondingly, two kinds of data
values that can be stored in variables, passed as arguments, returned by methods,
and operated on: primitive values (§4.2) and reference values (§4.3).

Type:
PrimitiveType
ReferenceType
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There is also a special null type, the type of the expression null (§3.10.7, §15.8.1),
which has no name.

Because the null type has no name, it is impossible to declare a variable of the null
type or to cast to the null type.

The null reference is the only possible value of an expression of null type.

The null reference can always be assigned or cast to any reference type (§5.2, §5.3,
§5.5).

In practice, the programmer can ignore the null type and just pretend that null is merely
a special literal that can be of any reference type.

4.2 Primitive Types and Values

A primitive type is predefined by the Java programming language and named by
its reserved keyword (§3.9):

PrimitiveType:
{Annotation} NumericType
{Annotation} boolean

NumericType:
IntegralType
FloatingPointType

IntegralType:
(one of)

byte short int long char

FloatingPointType:
(one of)

float double

Primitive values do not share state with other primitive values.
The numeric types are the integral types and the floating-point types.

The integral types are byte, short, int, and long, whose values are 8-bit, 16-bit,
32-bit and 64-bit signed two's-complement integers, respectively, and char, whose
values are 16-bit unsigned integers representing UTF-16 code units (§3.1).
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The floating-point types are float, whose values include the 32-bit IEEE 754
floating-point numbers, and double, whose values include the 64-bit IEEE 754
floating-point numbers.

The boolean type has exactly two values: true and false.

4.2.1 Integral Types and Values

The values of the integral types are integers in the following ranges:

¢ For byte, from -128 to 127, inclusive

* For short, from -32768 to 32767, inclusive

e For int, from -2147483648 to 2147483647, inclusive

For long, from -9223372036854775808 to 9223372036854775807, inclusive

For char, from '\u0000' to '\uffff' inclusive, that is, from O to 65535

4.2.2 Integer Operations

The Java programming language provides a number of operators that act on integral
values:

* The comparison operators, which result in a value of type boolean:
— The numerical comparison operators <, <=, >, and >= (§15.20.1)
— The numerical equality operators == and = (§15.21.1)
* The numerical operators, which result in a value of type int or long:
— The unary plus and minus operators + and - (§15.15.3, §15.15.4)
— The multiplicative operators *, /,and % (§15.17)
— The additive operators + and - (§15.18)
— The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)
— The decrement operator --, both prefix (§15.15.2) and postfix (§15.14.3)
— The signed and unsigned shift operators <<, >>, and >>> (§15.19)
— The bitwise complement operator ~ (§15.15.5)
— The integer bitwise operators &, *, and | (§15.22.1)
* The conditional operator 2 : (§15.25)
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* The cast operator (§15.16), which can convert from an integral value to a value
of any specified numeric type

* The string concatenation operator + (§15.18.1), which, when given a String
operand and an integral operand, will convert the integral operand to a String
representing its value in decimal form, and then produce a newly created String
that is the concatenation of the two strings

Other useful constructors, methods, and constants are predefined in the classes
Byte, Short, Integer, Long, and character.

If an integer operator other than a shift operator has at least one operand of type
long, then the operation is carried out using 64-bit precision, and the result of
the numerical operator is of type long. If the other operand is not long, it is first
widened (§5.1.5) to type long by numeric promotion (§5.6).

Otherwise, the operation is carried out using 32-bit precision, and the result of the
numerical operator is of type int. If either operand is not an int, it is first widened
to type int by numeric promotion.

Any value of any integral type may be cast to or from any numeric type. There are
no casts between integral types and the type boolean.

See §4.2.5 for an idiom to convert integer expressions to boolean.

The integer operators do not indicate overflow or underflow in any way.

An integer operator can throw an exception (§11 (Exceptions)) for the following
reasons:

* Any integer operator can throw a NullPointerException if unboxing
conversion (§5.1.8) of a null reference is required.

* The integer divide operator / (§15.17.2) and the integer remainder operator %
(§15.17.3) can throw an ArithmeticException if the right-hand operand is zero.

* The increment and decrement operators ++ (§15.14.2, §15.15.1) and --
(§15.14.3, §15.15.2) can throw an outofMemoryError if boxing conversion
(§5.1.7) is required and there is not sufficient memory available to perform the
conversion.

Example 4.2.2-1. Integer Operations

class Test {
public static void main(String[] args) {
int i = 1000000;
System.out.println(i * i);
long 1 = i;
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System.out.println(l * 1);
System.out.println(20296 / (1 - 1));

}
This program produces the output:

-727379968
1000000000000

and then encounters an ArithmeticException in the division by 1 - i, because 1
- 1 is zero. The first multiplication is performed in 32-bit precision, whereas the second
multiplication is a long multiplication. The value -727379968 is the decimal value of the
low 32 bits of the mathematical result, 1000000000000, which is a value too large for
type int.

4.2.3 Floating-Point Types, Formats, and Values

The floating-point types are £loat and double, which are conceptually associated
with the single-precision 32-bit and double-precision 64-bit format IEEE 754
values and operations as specified in IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985 (IEEE, New York).

The IEEE 754 standard includes not only positive and negative numbers that consist
of a sign and magnitude, but also positive and negative zeros, positive and negative
infinities, and special Not-a-Number values (hereafter abbreviated NaN). A NaN
value is used to represent the result of certain invalid operations such as dividing
zero by zero. NaN constants of both float and double type are predefined as
Float.NaN and Double.NaN.

Every implementation of the Java programming language is required to support two
standard sets of floating-point values, called the float value set and the double value
set. In addition, an implementation of the Java programming language may support
either or both of two extended-exponent floating-point value sets, called the float-
extended-exponent value set and the double-extended-exponent value set. These
extended-exponent value sets may, under certain circumstances, be used instead
of the standard value sets to represent the values of expressions of type float or
double (§5.1.13, §15.4).

The finite nonzero values of any floating-point value set can all be expressed in
the form s - m - 2 ¥ * D where s is +1 or -1, m is a positive integer less than
N , and e is an integer between E,,;,, = —(2K'1—2) and E,,, = 2K'1—1, inclusive, and
where N and K are parameters that depend on the value set. Some values can
be represented in this form in more than one way; for example, supposing that a
value v in a value set might be represented in this form using certain values for
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s, m, and e, then if it happened that m were even and e were less than 251 one
could halve m and increase e by 1 to produce a second representation for the same
value v. A representation in this form is called normalized it m = 2N otherwise
the representation is said to be denormalized. If a value in a value set cannot be
represented in such a way that m = 2N then the value is said to be a denormalized
value, because it has no normalized representation.

The constraints on the parameters N and K (and on the derived parameters E,,;,
and E,,,) for the two required and two optional floating-point value sets are
summarized in Table 4.2.3-A.

Table 4.2.3-A. Floating-point value set parameters

Parameter float float-extended-  double double-extended-
exponent exponent

N 24 24 53 53

K 8 =11 1 =15

Epax +127 = +1023 +1023 = +16383

Epin -126 <-1022 -1022 <-16382

Where one or both extended-exponent value sets are supported by an
implementation, then for each supported extended-exponent value set there is
a specific implementation-dependent constant K, whose value is constrained by
Table 4.2.3-A; this value K in turn dictates the values for E,,;;, and E,;,.

Each of the four value sets includes not only the finite nonzero values that are
ascribed to it above, but also NaN values and the four values positive zero, negative
zero, positive infinity, and negative infinity.

Note that the constraints in Table 4.2.3-A are designed so that every element of the
float value set is necessarily also an element of the float-extended-exponent value
set, the double value set, and the double-extended-exponent value set. Likewise,
each element of the double value set is necessarily also an element of the double-
extended-exponent value set. Each extended-exponent value set has a larger range
of exponent values than the corresponding standard value set, but does not have
more precision.

The elements of the float value set are exactly the values that can be represented
using the single floating-point format defined in the IEEE 754 standard. The
elements of the double value set are exactly the values that can be represented using
the double floating-point format defined in the IEEE 754 standard. Note, however,
that the elements of the float-extended-exponent and double-extended-exponent
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value sets defined here do not correspond to the values that can be represented
using IEEE 754 single extended and double extended formats, respectively.

The float, float-extended-exponent, double, and double-extended-exponent value
sets are not types. It is always correct for an implementation of the Java
programming language to use an element of the float value set to represent a value
of type float; however, it may be permissible in certain regions of code for an
implementation to use an element of the float-extended-exponent value set instead.
Similarly, it is always correct for an implementation to use an element of the double
value set to represent a value of type double; however, it may be permissible in
certain regions of code for an implementation to use an element of the double-
extended-exponent value set instead.

Except for NaN, floating-point values are ordered; arranged from smallest to
largest, they are negative infinity, negative finite nonzero values, positive and
negative zero, positive finite nonzero values, and positive infinity.

IEEE 754 allows multiple distinct NaN values for each of its single and double
floating-point formats. While each hardware architecture returns a particular bit
pattern for NaN when a new NaN is generated, a programmer can also create
NaNs with different bit patterns to encode, for example, retrospective diagnostic
information.

For the most part, the Java SE platform treats NaN values of a given type as though
collapsed into a single canonical value, and hence this specification normally refers
to an arbitrary NaN as though to a canonical value.

However, version 1.3 of the Java SE platform introduced methods enabling the
programmer to distinguish between NaN values: the Float.floatToRawIntBits and
Double.doubleToRawLongBits methods. The interested reader is referred to the
specifications for the Float and Double classes for more information.

Positive zero and negative zero compare equal; thus the result of the expression
0.0==-0.0 is true and the result of 0.0>-0.0 is false. But other operations can
distinguish positive and negative zero; for example, 1.0/0. 0 has the value positive
infinity, while the value of 1.0/-0.0 is negative infinity.

NaN is unordered, so:

e The numerical comparison operators <, <=, >, and >= return false if either or
both operands are NaN (§15.20.1).

* The equality operator == returns false if either operand is NaN.
In particular, (x<y) == ! (x>=y) will be false if x or y is NaN.

* The inequality operator !=returns true if either operand is NaN (§15.21.1).
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In particular, x!=x is true if and only if x is NaN.

424 Floating-Point Operations

The Java programming language provides a number of operators that act on
floating-point values:

* The comparison operators, which result in a value of type boolean:
— The numerical comparison operators <, <=, >, and >= (§15.20.1)
— The numerical equality operators == and = (§15.21.1)
* The numerical operators, which result in a value of type £loat or double:
— The unary plus and minus operators + and - (§15.15.3, §15.15.4)
— The multiplicative operators *, /,and ¢ (§15.17)
— The additive operators + and - (§15.18.2)
— The increment operator ++, both prefix (§15.15.1) and postfix (§15.14.2)
— The decrement operator --, both prefix (§15.15.2) and postfix (§15.14.3)
* The conditional operator 2 : (§15.25)

* The cast operator (§15.16), which can convert from a floating-point value to a
value of any specified numeric type

* The string concatenation operator + (§15.18.1), which, when given a String
operand and a floating-point operand, will convert the floating-point operand to
a String representing its value in decimal form (without information loss), and
then produce a newly created string by concatenating the two strings

Other useful constructors, methods, and constants are predefined in the classes
Float, Double, and Math.

If at least one of the operands to a binary operator is of floating-point type, then
the operation is a floating-point operation, even if the other is integral.

If at least one of the operands to a numerical operator is of type double, then the
operation is carried out using 64-bit floating-point arithmetic, and the result of the
numerical operator is a value of type double. If the other operand is not a double,
it is first widened (§5.1.5) to type double by numeric promotion (§5.6).

Otherwise, the operation is carried out using 32-bit floating-point arithmetic, and
the result of the numerical operator is a value of type £loat. (If the other operand
is not a float, it is first widened to type float by numeric promotion.)
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Any value of a floating-point type may be cast to or from any numeric type. There
are no casts between floating-point types and the type boolean.

See §4.2.5 for an idiom to convert floating-point expressions to boolean.

Operators on floating-point numbers behave as specified by IEEE 754 (with
the exception of the remainder operator (§15.17.3)). In particular, the Java
programming language requires support of IEEE 754 denormalized floating-point
numbers and gradual underflow, which make it easier to prove desirable properties
of particular numerical algorithms. Floating-point operations do not "flush to zero"
if the calculated result is a denormalized number.

The Java programming language requires that floating-point arithmetic behave
as if every floating-point operator rounded its floating-point result to the result
precision. Inexact results must be rounded to the representable value nearest to the
infinitely precise result; if the two nearest representable values are equally near,
the one with its least significant bit zero is chosen. This is the IEEE 754 standard's
default rounding mode known as round to nearest.

The Java programming language uses round toward zero when converting a
floating value to an integer (§5.1.3), which acts, in this case, as though the number
were truncated, discarding the mantissa bits. Rounding toward zero chooses at its
result the format's value closest to and no greater in magnitude than the infinitely
precise result.

A floating-point operation that overflows produces a signed infinity.

A floating-point operation that underflows produces a denormalized value or a
signed zero.

A floating-point operation that has no mathematically definite result produces NaN.
All numeric operations with NaN as an operand produce NaN as a result.

A floating-point operator can throw an exception (§11 (Exceptions)) for the
following reasons:

* Any floating-point operator can throw a NullPointerException if unboxing
conversion (§5.1.8) of a null reference is required.

e The increment and decrement operators ++ (§15.14.2, §15.15.1) and --
(§15.14.3, §15.15.2) can throw an outofMemoryError if boxing conversion
(§5.1.7) is required and there is not sufficient memory available to perform the
conversion.
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Example 4.2.4-1. Floating-point Operations

class Test {
public static void main(String[] args) {

// An example of overflow:
double d = 1e308;
System.out.print("overflow produces infinity: ");
System.out.println(d + "*10==" + d*10);
// An example of gradual underflow:
d = 1le-305 * Math.PI;

System.out.print("gradual underflow: " + d + "\n ")
for (int i = 0; i < 4; i++)
System.out.print(" " + (d /= 100000));

System.out.println();
// An example of NaN:
System.out.print("0.0/0.0 is Not-a-Number: ");
d=0.0/0.0;
System.out.println(d);
// An example of inexact results and rounding:
System.out.print("inexact results with float:");
for (int i = 0; i < 100; i++) {

float z = 1.0f / 1i;

if (z * i != 1.0f)

System.out.print(" " + 1i);

}
System.out.println();
// Another example of inexact results and rounding:
System.out.print("inexact results with double:");
for (int i = 0; i < 100; i++) {

double z = 1.0 / 1i;

if (z * i 1= 1.0)

System.out.print(" " + 1i);

}
System.out.println();
// An example of cast to integer rounding:
System.out.print("cast to int rounds toward 0: ");
d = 12345.6;
System.out.println((int)d + " " + (int)(-d));

This program produces the output:

overflow produces infinity: 1.0e+308*10==Infinity
gradual underflow: 3.141592653589793E-305
3.1415926535898E-310 3.141592653E-315 3.142E-320 0.0
0.0/0.0 is Not-a-Number: NaN

inexact results with float: 0 41 47 55 61 82 83 94 97
inexact results with double: 0 49 98

cast to int rounds toward 0: 12345 -12345
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This example demonstrates, among other things, that gradual underflow can result in a
gradual loss of precision.

The results when i is 0 involve division by zero, so that z becomes positive infinity, and
z * 01is NaN, which is not equal to 1.0.

4.2.5 The boolean Type and boolean Values

The boolean type represents a logical quantity with two possible values, indicated
by the literals true and false (§3.10.3).

The boolean operators are:

* The relational operators == and 1= (§15.21.2)

* The logical complement operator ! (§15.15.6)

* The logical operators &, *, and | (§15.22.2)

* The conditional-and and conditional-or operators && (§15.23) and | | (§15.24)
* The conditional operator 2 : (§15.25)

* The string concatenation operator + (§15.18.1), which, when given a String
operand and a boolean operand, will convert the boolean operand to a String
(either "true" or "false"), and then produce a newly created string that is the
concatenation of the two strings

Boolean expressions determine the control flow in several kinds of statements:
e The if statement (§14.9)

¢ The while statement (§14.12)

¢ The do statement (§14.13)

e The for statement (§14.14)

A boolean expression also determines which subexpression is evaluated in the
conditional ? : operator (§15.25).

Only boolean and Boolean expressions can be used in control flow statements and
as the first operand of the conditional operator 2

An integer or floating-point expression x can be converted to a boolean value,
following the C language convention that any nonzero value is true, by the
expression x!=0.
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An object reference obj can be converted to a boolean value, following the C
language convention that any reference other than null is true, by the expression
obj!=null.

A boolean value can be converted to a string by string conversion (§5.4).

A boolean value may be cast to type boolean,Boolean, Or Object (§5.5). No other
casts on type boolean are allowed.

4.3 Reference Types and Values

There are four kinds of reference types: class types (§8.1), interface types (§9.1),
type variables (§4.4), and array types (§10.1).

ReferenceType:
ClassOrlInterfaceType
TypeVariable
ArrayType

ClassOrlInterfaceType:
ClassType
InterfaceType

ClassType:
{Annotation} Identifier [TypeArguments]
ClassOrlInterfaceType . {Annotation} ldentifier [TypeArguments]

InterfaceType:
ClassType

TypeVariable:
{Annotation} Identifier

ArrayType:
PrimitiveType Dims
ClassOrlnterfaceType Dims
TypeVariable Dims

Dims:
{Annotation} [ 1 {{Annotation} [ 1}



TYPES, VALUES, AND VARIABLES Reference Types and Values

The sample code:

class Point { int[] metrics; }
interface Move { void move(int deltax, int deltay); }

declares a class type Point, an interface type Move, and uses an array type int[ ] (an array
of int) to declare the field metrics of the class Point.

A class or interface type consists of an identifier or a dotted sequence of identifiers,
where each identifier is optionally followed by type arguments (§4.5.1). If type
arguments appear anywhere in a class or interface type, it is a parameterized type

(84.5).

Each identifier in a class or interface type is classified as a package name or a type
name (§6.5.1). Identifiers which are classified as type names may be annotated. If a
class or interface type has the form 7. id (optionally followed by type arguments),
then id must be the simple name of an accessible member type of T (§6.6, §8.5,
§9.5), or a compile-time error occurs. The class or interface type denotes that
member type.

43.1 Objects

An object is a class instance or an array.

The reference values (often just references) are pointers to these objects, and a
special null reference, which refers to no object.

A class instance is explicitly created by a class instance creation expression (§15.9).
An array is explicitly created by an array creation expression (§15.10.1).

A new class instance is implicitly created when the string concatenation operator +
(§15.18.1) is used in a non-constant expression (§15.28), resulting in a new object
of type string (§4.3.3).

A new array object is implicitly created when an array initializer expression (§10.6)
is evaluated; this can occur when a class or interface is initialized (§12.4), when
a new instance of a class is created (§15.9), or when a local variable declaration
statement is executed (§14.4).

New objects of the types Boolean, Byte, Short,Character, Integer,Long,Float,
and Double may be implicitly created by boxing conversion (§5.1.7).
Example 4.3.1-1. Object Creation

class Point {
int x, y;

4.3

53



4.3

54

Reference Types and Values TYPES, VALUES, AND VARIABLES

Point() { System.out.println("default"); }
Point(int x, int y) { this.x = x; this.y = y; }

/* A Point instance is explicitly created at
class initialization time: */
static Point origin = new Point(0,0);

/* A String can be implicitly created
by a + operator: */
public String toString() { return "(" + x+ "," +y + ")"; }

class Test {
public static void main(String[] args) {
/* A Point is explicitly created
using newInstance: */
Point p = null;
try {
p = (Point)Class.forName("Point").newInstance();
} catch (Exception e) {
System.out.println(e);

}

/* An array is implicitly created
by an array constructor: */
Point a[] = { new Point(0,0), new Point(1l,1) };

/* Strings are implicitly created
by + operators: */
System.out.println("p: " + p);
System.out.println("a: { " + a[0] + ", " + a[l] + " }");

/* An array is explicitly created

by an array creation expression: */
String sa[] = new String[2];
sa[0] = "he"; sa[l] = "1llo";
System.out.println(sa[0] + sa[l]);

This program produces the output:

default

p: (0,0)

a: { (0,0), (1,1) }
hello

The operators on references to objects are:

* Field access, using either a qualified name (§6.6) or a field access expression
(§15.11)

* Method invocation (§15.12)
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The cast operator (§5.5, §15.16)

The string concatenation operator + (§15.18.1), which, when given a String
operand and a reference, will convert the reference to a string by invoking the
tostring method of the referenced object (using "null" if either the reference
or the result of tostring is a null reference), and then will produce a newly
created String that is the concatenation of the two strings

The instanceof operator (§15.20.2)
The reference equality operators == and t=(§15.21.3)
The conditional operator 2 : (§15.25).

There may be many references to the same object. Most objects have state, stored
in the fields of objects that are instances of classes or in the variables that are the
components of an array object. If two variables contain references to the same
object, the state of the object can be modified using one variable's reference to the
object, and then the altered state can be observed through the reference in the other
variable.

Example 4.3.1-2. Primitive and Reference Identity
class Value { int val; }

class Test {

public static void main(String[] args) {
int i1 = 3;
int i2 = il;
i2 = 4;
System.out.print("il==" + il);
System.out.println(" but i2==" + i2);
Value vl = new Value();
vl.val = 5;
Value v2 = vl;
v2.val = 6;
System.out.print("vl.val==" + vl.val);
System.out.println(" and v2.val==" + v2.val);

}
This program produces the output:

il==3 but i2==
vl.val==6 and v2.val==

because v1.val and v2.val reference the same instance variable (§4.12.3) in the one
Value object created by the only new expression, while i1 and i2 are different variables.

4.3
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Each object is associated with a monitor (§17.1), which is used by synchronized
methods (§8.4.3) and the synchronized statement (§14.19) to provide control over
concurrent access to state by multiple threads (§17 (Threads and Locks)).

4.3.2 The Class object

The class object is a superclass (§8.1.4) of all other classes.

All class and array types inherit (§8.4.8) the methods of class object, which are
summarized as follows:

The method clone is used to make a duplicate of an object.

The method equals defines a notion of object equality, which is based on value,
not reference, comparison.

The method finalize is run just before an object is destroyed (§12.6).

The method getclass returns the class object that represents the class of the
object.

A class object exists for each reference type. It can be used, for example,
to discover the fully qualified name of a class, its members, its immediate
superclass, and any interfaces that it implements.

The type of a method invocation expression of getClass is Class<? extends
ITl>, where T is the class or interface that was searched for getclass (§15.12.1)
and |7l denotes the erasure of 7 (§4.6).

A class method that is declared synchronized (§8.4.3.6) synchronizes on the
monitor associated with the class object of the class.

The method hashcode is very useful, together with the method equals, in
hashtables such as java.util.HashMap.

The methods wait,notify,and notifyall are used in concurrent programming
using threads (§17.2).

The method tostring returns a String representation of the object.

4.3.3 The Class string

Instances of class string represent sequences of Unicode code points.

A string object has a constant (unchanging) value.

String literals (§3.10.5) are references to instances of class string.
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The string concatenation operator + (§15.18.1) implicitly creates a new String
object when the result is not a constant expression (§15.28).

4.3.4 When Reference Types Are the Same

Two reference types are the same compile-time type if they have the same binary
name (§13.1) and their type arguments, if any, are the same, applying this definition
recursively.

When two reference types are the same, they are sometimes said to be the same
class or the same interface.

At run time, several reference types with the same binary name may be loaded
simultaneously by different class loaders. These types may or may not represent
the same type declaration. Even if two such types do represent the same type
declaration, they are considered distinct.

Two reference types are the same run-time type if:

* They are both class or both interface types, are defined by the same class loader,
and have the same binary name (§13.1), in which case they are sometimes said
to be the same run-time class or the same run-time interface.

* They are both array types, and their component types are the same run-time type
(810 (Arrays)).

4.4 Type Variables

A type variable is an unqualified identifier used as a type in class, interface, method,
and constructor bodies.

A type variable is introduced by the declaration of a type parameter of a generic
class, interface, method, or constructor (§8.1.2,89.1.2,88.4.4,8§8.8.4).

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]

TypeParameterModifier:
Annotation

TypeBound:
extends TypeVariable
extends ClassOrlinterfaceType { AdditionalBound}
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AdditionalBound:
& InterfaceType
The scope of a type variable declared as a type parameter is specified in §6.3.

Every type variable declared as a type parameter has a bound. If no bound is
declared for a type variable, object is assumed. If a bound is declared, it consists
of either:

* asingle type variable T, or
* aclass or interface type T possibly followed by interface types 1; & ... & I.
It is a compile-time error if any of the types 1; ... I, is a class type or type variable.

The erasures (§4.6) of all constituent types of a bound must be pairwise different,
or a compile-time error occurs.

A type variable must not at the same time be a subtype of two interface types which
are different parameterizations of the same generic interface, or a compile-time
eITOr OCCUrs.

The order of types in a bound is only significant in that the erasure of a type variable
is determined by the first type in its bound, and that a class type or type variable
may only appear in the first position.

The members of a type variable x with bound T & 7; & ... & I, are the members of
the intersection type (§4.9) T & 1; & ... & I, appearing at the point where the type
variable is declared.

Example 4.4-1. Members of a Type Variable

package TypeVarMembers;

class C {

public void mCPublic() {}
protected void mCProtected() {}

void mCPackage() {}
private void mCPrivate() {}

}

interface I {
void mI();

}

class CT extends C implements I {
public void mI() {}
}

class Test {
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<T extends C & I> void test(T t) {

t.mI(); // OK
t.mCPublic(); // OK
t.mCProtected(); // OK
t.mCPackage(); // OK
t.mCPrivate(); // Compile-time error

}

The type variable T has the same members as the intersection type C & I, which in turn
has the same members as the empty class CT, defined in the same scope with equivalent
supertypes. The members of an interface are always public, and therefore always inherited
(unless overridden). Hence mI is a member of CT and of T. Among the members of ¢, all
but mCPrivate are inherited by CT, and are therefore members of both CT and T.

If ¢ had been declared in a different package than T, then the call to mCPackage would
give rise to a compile-time error, as that member would not be accessible at the point where
T is declared.

4.5 Parameterized Types

A class or interface declaration that is generic (§8.1.2, §9.1.2) defines a set of
parameterized types.

A parameterized type is a class or interface type of the form c<7;,...,7,>, where ¢
is the name of a generic type and <T;,...,T,> is a list of type arguments that denote
a particular parameterization of the generic type.

A generic type has type parameters Fy,...,F, with corresponding bounds Bj,...,B,.
Each type argument T; of a parameterized type ranges over all types that are
subtypes of all types listed in the corresponding bound. That is, for each bound
type sin B;, T; is a subtype of S[F;:=T;, ..., Fp:=T,] (§4.10).

A parameterized type c<Ty,...,T,> is well-formed if all of the following are true:
* cis the name of a generic type.

* The number of type arguments is the same as the number of type parameters in
the generic declaration of c.

* When subjected to capture conversion (§5.1.10) resulting in the type c<x;,...,X,>,
each type argument x; is a subtype of S[F;:=X;,...,F,:=x,] for each bound
type s in B;.

It is a compile-time error if a parameterized type is not well-formed.
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In this specification, whenever we speak of a class or interface type, we include the
generic version as well, unless explicitly excluded.

Two parameterized types are provably distinct if either of the following is true:
* They are parameterizations of distinct generic type declarations.

* Any of their type arguments are provably distinct.

Given the generic types in the examples of §8.1.2, here are some well-formed parameterized
types:

* Seg<String>

* Seg<Seg<String>>

®* Seg<String>.Zipper<Integer>

®* Pair<String,Integer>
Here are some incorrect parameterizations of those generic types:

* Seg<int> is illegal, as primitive types cannot be type arguments.
* Pair<String> is illegal, as there are not enough type arguments.

* Pair<String,String,String> is illegal, as there are too many type arguments.

A parameterized type may be an parameterization of a generic class or interface which
is nested. For example, if a non-generic class ¢ has a generic member class D<T>, then
C.D<Object> is a parameterized type. And if a generic class c<T> has a non-generic
member class D, then the member type C<String>.Dis a parameterized type, even though
the class D is not generic.

4.5.1 Type Arguments of Parameterized Types

Type arguments may be either reference types or wildcards. Wildcards are useful
in situations where only partial knowledge about the type parameter is required.

TypeArguments:
< TypeArgumentList >

TypeArgumentList:
TypeArgument {, TypeArgument}

TypeArgument:
ReferenceType
Wildcard
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Wildcard:
{Annotation} ? [WildcardBounds]

WildcardBounds:
extends Referencelype
super ReferenceType

Wildcards may be given explicit bounds, just like regular type variable
declarations. An upper bound is signified by the following syntax, where B is the
bound:

? extends B

Unlike ordinary type variables declared in a method signature, no type inference
is required when using a wildcard. Consequently, it is permissible to declare lower
bounds on a wildcard, using the following syntax, where B is a lower bound:

? super B

The wildcard ? extends Object is equivalent to the unbounded wildcard 2.
Two type arguments are provably distinct if one of the following is true:

* Neither argument is a type variable or wildcard, and the two arguments are not
the same type.

* One type argument is a type variable or wildcard, with an upper bound (from
capture conversion (§5.1.10), if necessary) of s; and the other type argument T
is not a type variable or wildcard; and neither Isl <: |7l nor |7l <: |5l (§4.8, §4.10).

* Each type argument is a type variable or wildcard, with upper bounds (from
capture conversion, if necessary) of s and 7; and neither |sl <: |7l nor |7l <: [sl.

A type argument T; is said to contain another type argument T, written T, <= T,
if the set of types denoted by T, is provably a subset of the set of types denoted
by 7; under the reflexive and transitive closure of the following rules (where <:
denotes subtyping (§4.10)):

* ? extends T<=? extends Sif T<: s
® ? extends T<=?

® ? super T<=? super Sif s<: T

® ? super T<=?

® ? super T<= ? extends Object
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¢ T<=T
® T<=7?extends T

® T<=7?super T

The relationship of wildcards to established type theory is an interesting one, which we
briefly allude to here. Wildcards are a restricted form of existential types. Given a generic
type declaration G<T extends B>, G<?> is roughly analogous to Some X <: B. G<X>.

Historically, wildcards are a direct descendant of the work by Atsushi Igarashi and Mirko
Viroli. Readers interested in a more comprehensive discussion should refer to On Variance-
Based Subtyping for Parametric Types by Atsushi Igarashi and Mirko Viroli, in the
Proceedings of the 16th European Conference on Object Oriented Programming (ECOOP
2002). This work itself builds upon earlier work by Kresten Thorup and Mads Torgersen
(Unifying Genericity, ECOOP 99), as well as a long tradition of work on declaration based
variance that goes back to Pierre America's work on POOL (OOPSLA 89).

Wildcards differ in certain details from the constructs described in the aforementioned
paper, in particular in the use of capture conversion (§5.1.10) rather than the close
operation described by Igarashi and Viroli. For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

Example 4.5.1-1. Unbounded Wildcards

import java.util.Collection;
import java.util.ArrayList;

class Test {
static void printCollection(Collection<?> c) {
// a wildcard collection
for (Object o : c) {
System.out.println(o);
}
}

public static void main(String[] args) {
Collection<String> cs = new ArrayList<String>();
cs.add("hello");
cs.add("world");
printCollection(cs);

}
Note that using Collection<Object> as the type of the incoming parameter, ¢, would
not be nearly as useful; the method could only be used with an argument expression that

had type Collection<Object>, which would be quite rare. In contrast, the use of an
unbounded wildcard allows any kind of collection to be passed as an argument.

Here is an example where the element type of an array is parameterized by a wildcard:
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public Method getMethod(Class<?>[] parameterTypes) { ... }

Example 4.5.1-2. Bounded Wildcards

boolean addAll(Collection<? extends E> c)

Here, the method is declared within the interface Collection<E>, and is designed to add
all the elements of its incoming argument to the collection upon which it is invoked. A
natural tendency would be to use Collection<E> as the type of ¢, but this is unnecessarily
restrictive. An alternative would be to declare the method itself to be generic:

<T> boolean addAll(Collection<T> c)

This version is sufficiently flexible, but note that the type parameter is used only once in the
signature. This reflects the fact that the type parameter is not being used to express any kind
of interdependency between the type(s) of the argument(s), the return type and/or throws
type. In the absence of such interdependency, generic methods are considered bad style,
and wildcards are preferred.

Reference(T referent, ReferenceQueue<? super T> queue)

Here, the referent can be inserted into any queue whose element type is a supertype of the
type T of the referent; T is the lower bound for the wildcard.

4.5.2 Members and Constructors of Parameterized Types

Let c be a generic class or interface declaration with type parameters 4;,...,4,, and
let c<T;,...,T,> be a parameterization of ¢ where, for 1 <i < n, T; is a type (rather
than a wildcard). Then:

Let m be a member or constructor declaration in ¢, whose type as declared is T
(§8.2,88.8.6).

The type of min c<T;,...,T> 1S T[A;:=T1, ..., Ap:=Ty].

Let mbe a member or constructor declaration in b, where pis a class extended by ¢
or an interface implemented by c. Let b<uy,...,Ux> be the supertype of c<T;,...,T>
that corresponds to D.

The type of min c<T;,...,T,> is the type of min p<uy,...,.Ue>.

If any of the type arguments in the parameterization of ¢ are wildcards, then:

The types of the fields, methods, and constructors in c<Ty,...,T,> are the types
of the fields, methods, and constructors in the capture conversion of c<T;,...,T>
(§5.1.10).
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* Let b be a (possibly generic) class or interface declaration in c. Then the type
of pin c<Ty,...,T,> is D where, if D is generic, all type arguments are unbounded
wildcards.

This is of no consequence, as it is impossible to access a member of a parameterized type
without performing capture conversion, and it is impossible to use a wildcard after the
keyword new in a class instance creation expression (§15.9).

The sole exception to the previous paragraph is when a nested parameterized type is used
as the expression in an instanceof operator (§15.20.2), where capture conversion is not
applied.

A static member that is declared in a generic type declaration must be referred
to using the non-generic type that corresponds to the generic type (§6.1, §6.5.5.2,
§6.5.6.2), or a compile-time error occurs.

In other words, it is illegal to refer to a static member declared in a generic type
declaration by using a parameterized type.

4.6 Type Erasure

Type erasure is a mapping from types (possibly including parameterized types and
type variables) to types (that are never parameterized types or type variables). We
write |7l for the erasure of type 7. The erasure mapping is defined as follows:

* The erasure of a parameterized type (§4.5) 6<Ty,...,Tp> is IGl.

* The erasure of a nested type T.cis ITl.c.

* The erasure of an array type T[] is ITi[ ].

* The erasure of a type variable (§4.4) is the erasure of its leftmost bound.
* The erasure of every other type is the type itself.

Type erasure also maps the signature (§8.4.2) of a constructor or method to a
signature that has no parameterized types or type variables. The erasure of a
constructor or method signature s is a signature consisting of the same name as s
and the erasures of all the formal parameter types given in s.

The return type of a method (§8.4.5) and the type parameters of a generic method
or constructor (§8.4.4, §8.8.4) also undergo erasure if the method or constructor's
signature is erased.

The erasure of the signature of a generic method has no type parameters.
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4.7 Reifiable Types

Because some type information is erased during compilation, not all types are
available at run time. Types that are completely available at run time are known

as reifiable types.

A type is reifiable if and only if one of the following holds:

It refers to a non-generic class or interface type declaration.

It is a parameterized type in which all type arguments are unbounded wildcards
(84.5.1).

It is a raw type (§4.8).
It is a primitive type (§4.2).

It is an array type (§10.1) whose element type is reifiable.

non

It is a nested type where, for each type T separated by a ".", Titself is reifiable.

For example, if a generic class X<T> has a generic member class Y<U>, then the
type x<2>.Yv<?> is reifiable because x<?> is reifiable and v<?> is reifiable. The type
X<?>.Y<Object> is not reifiable because Y<Object> is not reifiable.

An intersection type is not reifiable.

The decision not to make all generic types reifiable is one of the most crucial, and
controversial design decisions involving the type system of the Java programming
language.

Ultimately, the most important motivation for this decision is compatibility with existing
code. In a naive sense, the addition of new constructs such as generics has no implications
for pre-existing code. The Java programming language, per se, is compatible with earlier
versions as long as every program written in the previous versions retains its meaning in
the new version. However, this notion, which may be termed language compatibility, is
of purely theoretical interest. Real programs (even trivial ones, such as "Hello World")
are composed of several compilation units, some of which are provided by the Java SE
platform (such as elements of java.lang or java.util).In practice, then, the minimum
requirement is platform compatibility - that any program written for the prior version of the
Java SE platform continues to function unchanged in the new version.

One way to provide platform compatibility is to leave existing platform functionality
unchanged, only adding new functionality. For example, rather than modify the existing
Collections hierarchy in java.util, one might introduce a new library utilizing generics.

The disadvantages of such a scheme is that it is extremely difficult for pre-existing clients
of the Collection library to migrate to the new library. Collections are used to exchange
data between independently developed modules; if a vendor decides to switch to the new,
generic, library, that vendor must also distribute two versions of their code, to be compatible

Reifiable Types
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with their clients. Libraries that are dependent on other vendors code cannot be modified to
use generics until the supplier's library is updated. If two modules are mutually dependent,
the changes must be made simultaneously.

Clearly, platform compatibility, as outlined above, does not provide a realistic path for
adoption of a pervasive new feature such as generics. Therefore, the design of the generic
type system seeks to support migration compatibility. Migration compatibiliy allows the
evolution of existing code to take advantage of generics without imposing dependencies
between independently developed software modules.

The price of migration compatibility is that a full and sound reification of the generic type
system is not possible, at least while the migration is taking place.

4.8 Raw Types

To facilitate interfacing with non-generic legacy code, it is possible to use as a type
the erasure (§4.6) of a parameterized type (§4.5) or the erasure of an array type
(§10.1) whose element type is a parameterized type. Such a type is called a raw

type.

More precisely, a raw type is defined to be one of:

* The reference type that is formed by taking the name of a generic type declaration
without an accompanying type argument list.

* An array type whose element type is a raw type.

* Anon-static member type of a raw type Rthat is not inherited from a superclass
or superinterface of r.

A non-generic class or interface type is not a raw type.

To see why a non-static type member of a raw type is considered raw, consider the
following example:

class Outer<T>{
T t;
class Inner {
T setOuterT(T tl) { t = tl; return t; }
}
}

The type of the member(s) of Inner depends on the type parameter of Outer. If Outer is
raw, Inner must be treated as raw as well, as there is no valid binding for T.
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This rule applies only to type members that are not inherited. Inherited type members that
depend on type variables will be inherited as raw types as a consequence of the rule that
the supertypes of a raw type are erased, described later in this section.

Another implication of the rules above is that a generic inner class of a raw type can itself
only be used as a raw type:

class Outer<T>{
class Inner<S> {
S s;
}
}

It is not possible to access Inner as a partially raw type (a "rare" type):

Outer.Inner<Double> x = null; // illegal
Double d = x.s;

because Outer itself is raw, hence so are all its inner classes including Inner, and so it is
not possible to pass any type arguments to Inner.

The superclasses (respectively, superinterfaces) of a raw type are the erasures of the
superclasses (superinterfaces) of any of the parameterizations of the generic type.

The type of a constructor (§8.8), instance method (§8.4, §9.4), or non-static field
(§8.3) of a raw type c that is not inherited from its superclasses or superinterfaces
is the raw type that corresponds to the erasure of its type in the generic declaration
corresponding to c.

The type of a static method or static field of a raw type c is the same as its type
in the generic declaration corresponding to c.

It is a compile-time error to pass type arguments to a non-static type member of
a raw type that is not inherited from its superclasses or superinterfaces.

It is a compile-time error to attempt to use a type member of a parameterized type
as a raw type.

This means that the ban on "rare" types extends to the case where the qualifying type is
parameterized, but we attempt to use the inner class as a raw type:

Outer<Integer>.Inner X = null; // illegal

This is the opposite of the case discussed above. There is no practical justification for this
half-baked type. In legacy code, no type arguments are used. In non-legacy code, we should
use the generic types correctly and pass all the required type arguments.

4.8
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The supertype of a class may be a raw type. Member accesses for the class are
treated as normal, and member accesses for the supertype are treated as for raw
types. In the constructor of the class, calls to super are treated as method calls on
araw type.

The use of raw types is allowed only as a concession to compatibility of legacy
code. The use of raw types in code written after the introduction of generics into
the Java programming language is strongly discouraged. It is possible that future
versions of the Java programming language will disallow the use of raw types.

To make sure that potential violations of the typing rules are always flagged, some
accesses to members of a raw type will result in compile-time unchecked warnings.
The rules for compile-time unchecked warnings when accessing members or
constructors of raw types are as follows:

* At an assignment to a field: if the type of the Primary in the field access
expression (§15.11) is araw type, then a compile-time unchecked warning occurs
if erasure changes the field's type.

* Atan invocation of a method or constructor: if the type of the class or interface to
search (§15.12.1) is araw type, then a compile-time unchecked warning occurs if
erasure changes any of the formal parameter types of the method or constructor.

* No compile-time unchecked warning occurs for a method call when the formal
parameter types do not change under erasure (even if the return type and/or
throws clause changes), for reading from a field, or for a class instance creation
of a raw type.

Note that the unchecked warnings above are distinct from the unchecked warnings possible
from unchecked conversion (§5.1.9), casts (§5.5.2), method declarations (§8.4.1, §8.4.8.3,
§8.4.8.4,§9.4.1.2), and variable arity method invocations (§15.12.4.2).

The warnings here cover the case where a legacy consumer uses a generified library. For
example, the library declares a generic class Foo<T extends String> that has a field £
of type Vector<T>, but the consumer assigns a vector of integers to e. £ where e has the
raw type Foo. The legacy consumer receives a warning because it may have caused heap
pollution (§4.12.2) for generified consumers of the generified library.

(Note that the legacy consumer can assign a Vector<String> from the library to its own
Vector variable without receiving a warning. That is, the subtyping rules (§4.10.2) of the
Java programming language make it possible for a variable of a raw type to be assigned a
value of any of the type's parameterized instances.)

The warnings from unchecked conversion cover the dual case, where a generified consumer
uses a legacy library. For example, a method of the library has the raw return type
Vector, but the consumer assigns the result of the method invocation to a variable of type
Vector<String>. This is unsafe, since the raw vector might have had a different element
type than String, but is still permitted using unchecked conversion in order to enable
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interfacing with legacy code. The warning from unchecked conversion indicates that the
generified consumer may experience problems from heap pollution at other points in the
program.

Example 4.8-1. Raw Types

class Cell<E> {

E value;
Cell(E v) { value = v; }
E get() { return value; }

void set(E v) { value = v; }

public static void main(String[] args) {
Cell x = new Cell<String>("abc");
System.out.println(x.value); // OK, has type Object
System.out.println(x.get()); // OK, has type Object
x.set("def"); // unchecked warning

Example 4.8-2. Raw Types and Inheritance

import java.util.*;
class NonGeneric {
Collection<Number> myNumbers() { return null; }

abstract class RawMembers<T> extends NonGeneric
implements Collection<String> {
static Collection<NonGeneric> cng =
new ArrayList<NonGeneric>();

public static void main(String[] args) {

RawMembers rw = null;

Collection<Number> cn = rw.myNumbers();

// OK
Iterator<String> is = rw.iterator();
// Unchecked warning
Collection<NonGeneric> cnn = rw.cng;
// OK, static member

In this program (which is not meant to be run), RawMembers<T> inherits the method:
Iterator<String> iterator()

from the Collection<String> superinterface. The raw type RawMembers inherits
iterator () from Collection,the erasure of Collection<String>, which means that
the return type of iterator() in RawMembers is Iterator. As a result, the attempt to
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assign rw.iterator () to Iterator<String> requires an unchecked conversion, so a
compile-time unchecked warning is issued.

In contrast, RawMembers inherits myNumbers () from the NonGeneric class whose
erasure is also NonGeneric. Thus, the return type of myNumbers () in RawMembers is not
erased, and the attempt to assign rw.myNumbers () to Collection<Number> requires no
unchecked conversion, so no compile-time unchecked warning is issued.

Similarly, the static member cng retains its parameterized type even when accessed
through a object of raw type. Note that access to a static member through an instance is
considered bad style and is discouraged.

This example reveals that certain members of a raw type are not erased, namely static
members whose types are parameterized, and members inherited from a non-generic
supertype.

Raw types are closely related to wildcards. Both are based on existential types. Raw types
can be thought of as wildcards whose type rules are deliberately unsound, to accommodate
interaction with legacy code. Historically, raw types preceded wildcards; they were first
introduced in GJ, and described in the paper Making the future safe for the past: Adding
Genericity to the Java Programming Language by Gilad Bracha, Martin Odersky, David
Stoutamire, and Philip Wadler, in Proceedings of the ACM Conference on Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA 98), October 1998.

4.9 Intersection Types

An intersection type takes the form 7; & ... & T, (n>0), where T; (1 =i < n) are types.

Intersection types can be derived from type parameter bounds (§4.4) and cast
expressions (§15.16); they also arise in the processes of capture conversion
(§5.1.10) and least upper bound computation (§4.10.4).

The values of an intersection type are those objects that are values of all of the
types T; for 1 =i =n.

Every intersection type T; & ... & T, induces a notional class or interface for the
purpose of identifying the members of the intersection type, as follows:

* For each 7; (1 =i < n), let c; be the most specific class or array type such that
T; <: ;. Then there must be some ¢ such that ¢, <: ¢; forany i (1 =i =<n), or
a compile-time error occurs.

* For 1 =j=n,if r;is a type variable, then let T;' be an interface whose members
are the same as the public members of T;; otherwise, if 75 is an interface, then
let Tj' be Tj.
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e If ¢, is Object, a notional interface is induced; otherwise, a notional class
is induced with direct superclass cx. This class or interface has direct
superinterfaces T, ..., T,,' and is declared in the package in which the intersection

type appears.

The members of an intersection type are the members of the class or interface it
induces.

It is worth dwelling upon the distinction between intersection types and the bounds of type
variables. Every type variable bound induces an intersection type. This intersection type is
often trivial, consisting of a single type. The form of a bound is restricted (only the first
element may be a class or type variable, and only one type variable may appear in the
bound) to preclude certain awkward situations coming into existence. However, capture
conversion can lead to the creation of type variables whose bounds are more general, such
as array types).

4.10 Subtyping

The subtype and supertype relations are binary relations on types.

The supertypes of a type are obtained by reflexive and transitive closure over the
direct supertype relation, written s >; T, which is defined by rules given later in
this section. We write s :> T to indicate that the supertype relation holds between
sand T.

5 1is a proper supertype of T, written s> T, if s :> Tand 5= T.

The subtypes of a type T are all types u such that T is a supertype of u, and the
null type. We write T <: s to indicate that that the subtype relation holds between
types T and s.

T is a proper subtype of s, written T< s,if T<: sand s = T.
Tis a direct subtype of s, written T<; s,if s>, T.

Subtyping does not extend through parameterized types: T <: s does not imply that
C<T> <: C<5>.

4.10.1 Subtyping among Primitive Types
The following rules define the direct supertype relation among the primitive types:
® double >; float

¢ float >; long
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® long >; int
® int >; char
® int >; short

® short >; byte

4.10.2 Subtyping among Class and Interface Types

Given a non-generic type declaration c, the direct supertypes of the type c are all
of the following:

* The direct superclass of ¢ (§8.1.4).
* The direct superinterfaces of ¢ (§8.1.5).
* The type object, if cis an interface type with no direct superinterfaces (§9.1.3).

Given a generic type declaration c<Fy,....,F,> (n > 0), the direct supertypes of the
raw type c (§4.8) are all of the following:

* The direct superclass of the raw type c.
* The direct superinterfaces of the raw type c.

* The type object, if c<Fy,...,Fp> is a generic interface type with no direct
superinterfaces (§9.1.2).

Given a generic type declaration c<Fy,....,F,> (n > 0), the direct supertypes of the
generic type c<Fj,...,F,> are all of the following:

* The direct superclass of c<Fy,...,.Fp>.
* The direct superinterfaces of c<Fy,...,Fp>.

* The type object, if c<Fy,...,Fp> is a generic interface type with no direct
superinterfaces.

* The raw type c.

Given a generic type declaration c<Fy,....,F,> (n > 0), the direct supertypes of
the parameterized type c<Ty,...,T,>, Where T; (1 < i < n) is a type, are all of the
following:

* p<u; 0,...,Ux 0>, where p<u;,...,Ux> is a generic type which is a direct supertype
of the generic type c<T;,...,T,> and O is the substitution [F;:=T;, ..., Fy:=Ty].

* (<Si,...,S;>, Where s; contains 7; (1 <i<n) (§4.5.1).
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* The type object, if c<Fy,...,F,> is a generic interface type with no direct
superinterfaces.

* The raw type c.

Given a generic type declaration c<F;,...,F,> (n > 0), the direct supertypes of the
parameterized type C<Rj,...,R,> Where at least one of the r; (1 =i = n) is a wildcard
type argument, are the direct supertypes of the parameterized type c<x,....X,>
which is the result of applying capture conversion to C<R;,...,R;> (§5.1.10).

The direct supertypes of an intersection type T; & ... & T,are T; (1 =i <n).
The direct supertypes of a type variable are the types listed in its bound.
A type variable is a direct supertype of its lower bound.

The direct supertypes of the null type are all reference types other than the null
type itself.

4.10.3 Subtyping among Array Types

The following rules define the direct supertype relation among array types:

If s and T are both reference types, then s{1 >, T[] iff s>, T.
® Object >; Object]]

® Cloneable >; Object]]

® java.io.Serializable >; Object[]

 If pis a primitive type, then:

— Object >; P[]

— Cloneable >; P[]

— java.io.Serializable >; P[]

4.104 Least Upper Bound

The least upper bound, or "lub", of a set of reference types is a shared supertype that
is more specific than any other shared supertype (that is, no other shared supertype
is a subtype of the least upper bound). This type, lub(vy, ..., Uy), is determined as
follows.

If k =1, then the lub is the type itself: lub(v) = v.

Otherwise:
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e Foreachu; (1 =i<k):
Let ST(u;) be the set of supertypes of u;.
Let EST(u;), the set of erased supertypes of u;, be:
EST(u;) ={ Iwl | win ST(u;) } where Iwl is the erasure of w.

The reason for computing the set of erased supertypes is to deal with situations where
the set of types includes several distinct parameterizations of a generic type.

For example, given List<String> and List<Object>, simply intersecting the
sets ST(List<String>) = { List<String>, Collection<String>, Object } and
ST(List<Object>) = { List<Object>, Collection<Object>, Object } would
yield a set { Object }, and we would have lost track of the fact that the upper bound
can safely be assumed to be a List.

In contrast, intersecting EST(List<String>) = { List, Collection, Object } and
EST(rist<Object>) = { List,Collection, Object } yields { List, Collection,
Object }, which will eventually enable us to produce List<?>.

e Let EC, the erased candidate set for u; ... Uy, be the intersection of all the sets
EST(u;) (1 =i<k).

¢ Let MEC, the minimal erased candidate set for u; ... Uk, be:

MEC ={ vl vin EC, and for all w= vin EC, it is not the case that w<: v }

Because we are seeking to infer more precise types, we wish to filter out any candidates
that are supertypes of other candidates. This is what computing MEC accomplishes. In
our running example, we had EC = { List, Collection,Object },s0 MEC ={ List
}. The next step is to recover type arguments for the erased types in MEC.

* For any element ¢ of MEC that is a generic type:
Let the "relevant" parameterizations of G, Relevant(c), be:

Relevant(¢) ={ vl1 <i<k: vin ST(u;) and v=c<..> }

In our running example, the only generic element of MEC is List, and Relevant(List)
= { List<String>, List<Object> }. We will now seek to find a type argument for
List that contains (§4.5.1) both String and Object.

This is done by means of the least containing parameterization (Icp) operation defined
below. The first line defines lcp() on a set, such as Relevant(List), as an operation on
a list of the elements of the set. The next line defines the operation on such lists, as a
pairwise reduction on the elements of the list. The third line is the definition of lcp() on
pairs of parameterized types, which in turn relies on the notion of least containing type
argument (Icta). Icta() is defined for all possible cases.
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Let the "candidate" parameterization of G, Candidate(G), be the most
specific parameterization of the generic type ¢ that contains all the relevant
parameterizations of G:

Candidate(c) = Icp(Relevant(c))
where Icp(), the least containing invocation, is:
— lep(s) =Icp(ey, ..., en) Where e; (1 =i<n)in s
— lcp(ey, ..., en) = lcp(Icp(es, e2), €3, .., €n)
— lep(e<xy, ..., Xp>, G<Y1, ..., Yp>) = 6<Icta(xy, ¥1), ..., Icta(x,, v,)>
— lep(6<xy, ..., Xp>) = c<lcta(x;), ..., Icta(x,)>
and where Icta(), the least containing type argument, is: (assuming v and v are
types)
— Icta(u, v) = vif u= v, otherwise ? extends lub(u, v)
— Icta(u, ? extends V) = ? extends lub(u, V)
— lcta(u, ? super V) = 2 super glb(u, v)
— Icta(? extends U, ? extends V) = ? extends lub(u, V)
— Icta(? extends U, ? super V) = Uif U= v, otherwise ?
— Icta(? super U, ? super V) = ? super glb(u, v)
— Icta(u) = 2 if U's upper bound is object, otherwise ? extends lub(u,0bject)
and where glb() is as defined in §5.1.10.
e Let lub(u; ... Uy) be:
Best(w;) & ... &« Best(w,)

where w; (1 =i =< r) are the elements of MEC, the minimal erased candidate set
of U ... Ug,

and where, if any of these elements are generic, we use the candidate
parameterization (so as to recover type arguments):

Best(x) = Candidate(x) if x is generic; x otherwise.

Strictly speaking, this lub() function only approximates a least upper bound.
Formally, there may exist some other type Tsuch that all of u; ... Uy are subtypes of T
and ris a subtype of lub(uy, ..., Ux). However, a compiler for the Java programming
language must implement lub() as specified above.
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It is possible that the lub() function yields an infinite type. This is permissible, and
a compiler for the Java programming language must recognize such situations and
represent them appropriately using cyclic data structures.

The possibility of an infinite type stems from the recursive calls to lub(). Readers familiar
with recursive types should note that an infinite type is not the same as a recursive type.

4.11 Where Types Are Used

Types are used in most kinds of declaration and in certain kinds of expression.
Specifically, there are 16 type contexts where types are used:

¢ In declarations:

1. A type in the extends or implements clause of a class declaration (§8.1.4,
§8.1.5, §8.5,89.5)

2. A type in the extends clause of an interface declaration (§9.1.3, §8.5, §9.5)

3. The return type of a method (including the type of an element of an
annotation type) (§8.4.5, §9.4,§9.6.1)

4. A type in the throws clause of a method or constructor (§8.4.6, §8.8.5,8§9.4)

5. A type in the extends clause of a type parameter declaration of a generic
class, interface, method, or constructor (§8.1.2,8§9.1.2,§8.4.4,§8.8.4)

6. The type in a field declaration of a class or interface (including an enum
constant) (§8.3, §9.3,8§8.9.1)

7. The type in a formal parameter declaration of a method, constructor, or
lambda expression (§8.4.1, §8.8.1,§9.4, §15.27.1)

8. The type of the receiver parameter of a method (§8.4.1)
9. The type in a local variable declaration (§14.4,§14.14.1,§14.14.2,§14.20.3)
10. The type in an exception parameter declaration (§14.20)

* In expressions:

11. A type in the explicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (§8.8.7.1, §15.9, §15.12)
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12. In an unqualified class instance creation expression, as the class type to be
instantiated (§15.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (§15.9.5)

13. The element type in an array creation expression (§15.10.1)
14. The type in the cast operator of a cast expression (§15.16)
15. The type that follows the instanceof relational operator (§15.20.2)

16. In a method reference expression (§15.13), as the reference type to search
for a member method or as the class type or array type to construct.

Also, types are used as:
* The element type of an array type in any of the above contexts; and

* A non-wildcard type argument, or a bound of a wildcard type argument, of a
parameterized type in any of the above contexts.

Finally, there are three special terms in the Java programming language which
denote the use of a type:

¢ An unbounded wildcard (§4.5.1)
e The ... inthe type of a variable arity parameter (§8.4.1), to indicate an array type

* The simple name of a type in a constructor declaration (§8.8), to indicate the
class of the constructed object

The meaning of types in type contexts is given by:
e §4.2, for primitive types
* §4 .4, for type parameters

* §4.5, for class and interface types that are parameterized, or appear either as type
arguments in a parameterized type or as bounds of wildcard type arguments in
a parameterized type

* §4.8, for class and interface types that are raw
* §4.9, for intersection types in the bounds of type parameters

* §6.5, for class and interface types in contexts where genericity is unimportant

(86.1)
* §10.1, for array types

Some type contexts restrict how a reference type may be parameterized:

4.11
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* The following type contexts require that if a type is a parameterized reference
type, it has no wildcard type arguments:

— In an extends or implements clause of a class declaration (§8.1.4, §8.1.5)
— In an extends clause of an interface declaration (§9.1.3)

— In an unqualified class instance creation expression, as the class type to be
instantiated (§15.9) or as the direct superclass or direct superinterface of an
anonymous class to be instantiated (§15.9.5)

— In a method reference expression (§15.13), as the reference type to search for
a member method or as the class type or array type to construct.

In addition, no wildcard type arguments are permitted in the explicit type
argument list to an explicit constructor invocation statement or class instance
creation expression or method invocation expression or method reference
expression (§8.8.7.1,§15.9,§15.12, §15.13).

* The following type contexts require that if a type is a parameterized reference
type, it has only unbounded wildcard type arguments (i.e. it is a reifiable type) :

— As the element type in an array creation expression (§15.10.1)
— As the type that follows the instanceof relational operator (§15.20.2)

* The following type contexts disallow a parameterized reference type altogether,
because they involve exceptions and the type of an exception is non-generic

(§6.1):
— As the type of an exception that can be thrown by a method or constructor
(§8.4.6,§8.8.5,§94)

— In an exception parameter declaration (§14.20)

In any type context where a type is used, it is possible to annotate the keyword denoting
a primitive type or the Identifier denoting the simple name of a reference type. It is also
possible to annotate an array type by writing an annotation to the left of the [ at the desired
level of nesting in the array type. Annotations in these locations are called type annotations,
and are specified in §9.7 4. Here are some examples:

* @Foo int[] £; annotates the primitive type int

* int @Foo [] £; annotates the array type int[ ]

* int @Foo [][] £; annotates the array type int[ ][]

* int[] @Foo [] £f; annotates the array type int[ ] which is the component type of
the array type int[ ][]
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Five of the type contexts which appear in declarations occupy the same syntactic real estate
as a number of declaration contexts (§9.6.4.1):

* The return type of a method (including the type of an element of an annotation type)

* The type in a field declaration of a class or interface (including an enum constant)

* The type in a formal parameter declaration of a method, constructor, or lambda

expression
* The type in a local variable declaration

* The type in an exception parameter declaration

The fact that the same syntactic location in a program can be both a type context and a
declaration context arises because the modifiers for a declaration immediately precede the
type of the declared entity. §9.7.4 explains how an annotation in such a location is deemed

to appear in a type context or a declaration context or both.

Example 4.11-1. Usage of a Type

import java.util.Random;
import java.util.Collection;
import java.util.ArrayList;

class MiscMath<T extends Number> {

int divisor;

MiscMath(int divisor) { this.divisor = divisor; }

float ratio(long 1) {
try {

1 /= divisor;
} catch (Exception e) {
if (e instanceof ArithmeticException)
1= Long.MAX_ VALUE;
else
1 =20;
}
return (float)l;

}

double gausser() {

Random r = new Random();
double[] val = new double[2];
val[0] = r.nextGaussian();
val[l] = r.nextGaussian();
return (val[0] + val[l]) / 2;

}

Collection<Number> fromArray(Number[] na) {
Collection<Number> cn = new ArrayList<Number>();
for (Number n : na) cn.add(n);
return cn;

}
<S> void loop(S s) { this.<S>loop(s); }
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In this example, types are used in declarations of the following:
e Imported types (§7.5); here the type Random, imported from the type
java.util.Random of the package java.util,is declared

¢ Fields, which are the class variables and instance variables of classes (§8.3), and
constants of interfaces (§9.3); here the field divisor in the class MiscMath is declared
to be of type int

e Method parameters (§8.4.1); here the parameter 1 of the method ratio is declared to
be of type long

* Method results (§8.4); here the result of the method ratio is declared to be of type
float, and the result of the method gausser is declared to be of type double

* Constructor parameters (§8.8.1); here the parameter of the constructor for MiscMath is
declared to be of type int

¢ Local variables (§14.4, §14.14); the local variables r and val of the method gausser
are declared to be of types Random and double[ ] (array of double)

» Exception parameters (§14.20); here the exception parameter e of the catch clause is
declared to be of type Exception

* Type parameters (§4.4); here the type parameter of MiscMath is a type variable T with
the type Number as its declared bound

* Inany declaration that uses a parameterized type; here the type Number is used as a type
argument (§4.5.1) in the parameterized type Collection<Number>.

and in expressions of the following kinds:

¢ C(lass instance creations (§15.9); here a local variable r of method gausser is initialized
by a class instance creation expression that uses the type Random

* Generic class (§8.1.2) instance creations (§15.9); here Number is used as a type argument
in the expression new ArrayList<Number>()

* Array creations (§15.10.1); here the local variable val of method gausser is initialized
by an array creation expression that creates an array of double with size 2

¢ Generic method (§8.4.4) or constructor (§8.8.4) invocations (§15.12); here the method
loop calls itself with an explicit type argument S

e Casts (§15.16); here the return statement of the method ratio uses the £loat type
in a cast

* The instanceof operator (§15.20.2); here the instanceof operator tests whether e is
assignment-compatible with the type ArithmeticException

4.12 Variables

A variable is a storage location and has an associated type, sometimes called its
compile-time type, that is either a primitive type (§4.2) or a reference type (§4.3).
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A variable's value is changed by an assignment (§15.26) or by a prefix or postfix +
+ (increment) or -- (decrement) operator (§15.14.2,§15.14.3,§15.15.1, §15.15.2).

Compatibility of the value of a variable with its type is guaranteed by the design of
the Java programming language, as long as a program does not give rise to compile-
time unchecked warnings (§4.12.2). Default values (§4.12.5) are compatible and all
assignments to a variable are checked for assignment compatibility (§5.2), usually
at compile time, but, in a single case involving arrays, a run-time check is made
(810.5).

4.12.1 Variables of Primitive Type

A variable of a primitive type always holds a primitive value of that exact primitive
type.

4.12.2 Variables of Reference Type

A variable of a class type T can hold a null reference or a reference to an instance
of class T or of any class that is a subclass of T.

A variable of an interface type can hold a null reference or a reference to any
instance of any class that implements the interface.

Note that a variable is not guaranteed to always refer to a subtype of its declared type, but
only to subclasses or subinterfaces of the declared type. This is due to the possibility of
heap pollution discussed below.

If Tis a primitive type, then a variable of type "array of 7" can hold a null reference
or a reference to any array of type "array of 7".

If ris a reference type, then a variable of type "array of 7" can hold a null reference
or a reference to any array of type "array of s" such that type s is a subclass or
subinterface of type T.

A variable of type object[ ] can hold a reference to an array of any reference type.

A variable of type object can hold a null reference or a reference to any object,
whether it is an instance of a class or an array.

It is possible that a variable of a parameterized type will refer to an object that is
not of that parameterized type. This situation is known as heap pollution.

Heap pollution can only occur if the program performed some operation involving
araw type that would give rise to a compile-time unchecked warning (§4.8,§5.1.9,
§55.2,§8.4.1,8§8.4.8.3,§8.4.8.4,89.4.1.2,§15.12.4.2), or if the program aliases an
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array variable of non-reifiable element type through an array variable of a supertype
which is either raw or non-generic.

For example, the code:

List 1 = new ArrayList<Number>();
List<String> 1ls = 1; // Unchecked warning

gives rise to a compile-time unchecked warning, because it is not possible to ascertain,
either at compile time (within the limits of the compile-time type checking rules) or at run
time, whether the variable 1 does indeed refer to a List<String>.

If the code above is executed, heap pollution arises, as the variable 1s, declared to be a
List<String>, refers to a value that is not in fact a List<String>.

The problem cannot be identified at run time because type variables are not reified, and
thus instances do not carry any information at run time regarding the type arguments used
to create them.

In a simple example as given above, it may appear that it should be straightforward to
identify the situation at compile time and give an error. However, in the general (and typical)
case, the value of the variable 1 may be the result of an invocation of a separately compiled
method, or its value may depend upon arbitrary control flow. The code above is therefore
very atypical, and indeed very bad style.

Furthermore, the fact that Object[ ] is a supertype of all array types means that unsafe
aliasing can occur which leads to heap pollution. For example, the following code compiles
because it is statically type-correct:

static void m(List<String>... stringLists) {
Object[] array = stringLists;
List<Integer> tmpList = Arrays.asList(42);
array[0] = tmpList; // (1)
String s = stringLists[0].get(0); // (2)

Heap pollution occurs at (1) because a component in the stringLists array that should
refer to a List<String> now refers to a List<Integer>. There is no way to detect this
pollution in the presence of both a universal supertype (Object[ ]) and a non-reifiable type
(the declared type of the formal parameter, List<String>[ ]). No unchecked warning is
justified at (1); nevertheless, at run time, a ClassCastException will occur at (2).

A compile-time unchecked warning will be given at any invocation of the method above
because an invocation is considered by the Java programming language's static type system
to create an array whose element type, List<String>,is non-reifiable (§15.12.4.2). If and
only if the body of the method was type-safe with respect to the variable arity parameter,
then the programmer could use the safevarargs annotation to silence warnings at
invocations (§9.6.4.7). Since the body of the method as written above causes heap pollution,
it would be completely inappropriate to use the annotation to disable warnings for callers.
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Finally, note that the stringLists array could be aliased through variables of types other
than Object[ ], and heap pollution could still occur. For example, the type of the array
variable could be java.util.Collection[ ] - a raw element type - and the body of the
method above would compile without warnings or errors and still cause heap pollution. And
if the Java SE platform defined, say, Sequence as a non-generic supertype of List<T>,
then using Sequence as the type of array would also cause heap pollution.

The variable will always refer to an object that is an instance of a class that
represents the parameterized type.

The value of 1s in the example above is always an instance of a class that provides a
representation of a List.

Assignment from an expression of a raw type to a variable of a parameterized type should
only be used when combining legacy code which does not make use of parameterized types
with more modern code that does.

If no operation that requires a compile-time unchecked warning to be issued takes place,
and no unsafe aliasing occurs of array variables with non-reifiable element types, then
heap pollution cannot occur. Note that this does not imply that heap pollution only occurs
if a compile-time unchecked warning actually occurred. It is possible to run a program
where some of the binaries were produced by a compiler for an older version of the Java
programming language, or from sources that explicitly suppressed unchecked warnings.
This practice is unhealthy at best.

Conversely, it is possible that despite executing code that could (and perhaps did)
give rise to a compile-time unchecked warning, no heap pollution takes place. Indeed,
good programming practice requires that the programmer satisfy herself that despite any
unchecked warning, the code is correct and heap pollution will not occur.

4.12.3 Kinds of Variables

There are eight kinds of variables:

1.

A class variable is a field declared using the keyword static within a class
declaration (§8.3.1.1), or with or without the keyword static within an
interface declaration (§9.3).

A class variable is created when its class or interface is prepared (§12.3.2) and
is initialized to a default value (§4.12.5). The class variable effectively ceases
to exist when its class or interface is unloaded (§12.7).

An instance variable is a field declared within a class declaration without using
the keyword static (§8.3.1.1).

If a class Thas a field a that is an instance variable, then a new instance variable
a is created and initialized to a default value (§4.12.5) as part of each newly
created object of class T or of any class that is a subclass of 7 (§8.1.4). The
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instance variable effectively ceases to exist when the object of which itis a field
is no longer referenced, after any necessary finalization of the object (§12.6)
has been completed.

Array components are unnamed variables that are created and initialized to
default values (§4.12.5) whenever a new object that is an array is created (§10
(Arrays), §15.10.2). The array components effectively cease to exist when the
array is no longer referenced.

Method parameters (§8.4.1) name argument values passed to a method.

For every parameter declared in a method declaration, a new parameter variable
is created each time that method is invoked (§15.12). The new variable is
initialized with the corresponding argument value from the method invocation.
The method parameter effectively ceases to exist when the execution of the
body of the method is complete.

Constructor parameters (§8.8.1) name argument values passed to a
constructor.

For every parameter declared in a constructor declaration, a new parameter
variable is created each time a class instance creation expression (§15.9) or
explicit constructor invocation (§8.8.7) invokes that constructor. The new
variable is initialized with the corresponding argument value from the creation
expression or constructor invocation. The constructor parameter effectively
ceases to exist when the execution of the body of the constructor is complete.

Lambda parameters (§15.27.1) name argument values passed to a lambda
expression body (§15.27.2).

For every parameter declared in a lambda expression, a new parameter variable
is created each time a method implemented by the lambda body is invoked
(§15.12). The new variable is initialized with the corresponding argument
value from the method invocation. The lambda parameter effectively ceases to
exist when the execution of the lambda expression body is complete.

An exception parameter is created each time an exception is caught by a catch
clause of a try statement (§14.20).

The new variable is initialized with the actual object associated with the
exception (§11.3, §14.18). The exception parameter effectively ceases to exist
when execution of the block associated with the catch clause is complete.

Local variables are declared by local variable declaration statements (§14.4).

Whenever the flow of control enters a block (§14.2) or for statement
(§14.14), a new variable is created for each local variable declared in a local
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variable declaration statement immediately contained within that block or for
statement.

A local variable declaration statement may contain an expression which
initializes the variable. The local variable with an initializing expression is not
initialized, however, until the local variable declaration statement that declares
it is executed. (The rules of definite assignment (§16 (Definite Assignment))
prevent the value of a local variable from being used before it has been
initialized or otherwise assigned a value.) The local variable effectively ceases
to exist when the execution of the block or for statement is complete.

Were it not for one exceptional situation, a local variable could always be regarded
as being created when its local variable declaration statement is executed. The
exceptional situation involves the switch statement (§14.11), where it is possible for
control to enter a block but bypass execution of a local variable declaration statement.
Because of the restrictions imposed by the rules of definite assignment (§16 (Definite
Assignment)), however, the local variable declared by such a bypassed local variable
declaration statement cannot be used before it has been definitely assigned a value by
an assignment expression (§15.26).

Example 4.12.3-1. Different Kinds of Variables

class Point {

static int numPoints; // numPoints is a class variable
int x, y; // x and y are instance variables
int[] w = new int[10]; // w[0] is an array component

int setX(int x) { // x is a method parameter

int oldx = this.x; // oldx is a local variable
this.x = x;
return oldx;

4.124 final Variables

A variable can be declared final. A final variable may only be assigned to once.
It is a compile-time error if a £inal variable is assigned to unless it is definitely
unassigned immediately prior to the assignment (§16 (Definite Assignment)).

Once a final variable has been assigned, it always contains the same value. If a
final variable holds a reference to an object, then the state of the object may be
changed by operations on the object, but the variable will always refer to the same
object. This applies also to arrays, because arrays are objects; if a final variable
holds a reference to an array, then the components of the array may be changed by
operations on the array, but the variable will always refer to the same array.

A blank final is a final variable whose declaration lacks an initializer.

4.12

85



4.12

86

Variables TYPES, VALUES, AND VARIABLES

A constant variable is a £inal variable of primitive type or type String that is
initialized with a constant expression (§15.28). Whether a variable is a constant
variable or not may have implications with respect to class initialization (§12.4.1),
binary compatibility (§13.1, §13.4.9), and definite assignment (§16 (Definite
Assignment)).

Three kinds of variable are implicitly declared final: a field of an interface
(§9.3), a local variable which is a resource of a try-with-resources statement
(§14.20.3), and an exception parameter of a multi-catch clause (§14.20). An
exception parameter of a uni-catch clause is never implicitly declared £inal, but
may be effectively final.

Example 4.12.4-1. Final Variables

Declaring a variable £inal can serve as useful documentation that its value will not change
and can help avoid programming errors. In this program:

class Point {
int x, y;
int useCount;
Point(int x, int y) { this.x = x; this.y = y; }
static final Point origin = new Point(0, 0);

}

the class Point declares a final class variable origin. The origin variable holds a
reference to an object that is an instance of class Point whose coordinates are (0, 0). The
value of the variable Point.origin can never change, so it always refers to the same
Point object, the one created by its initializer. However, an operation on this Point object
might change its state - for example, modifying its useCount or even, misleadingly, its x
or y coordinate.

Certain variables that are not declared final are instead considered effectively
final:

* A local variable whose declarator has an initializer (§14.4.2) is effectively final
if all of the following are true:
— Itis not declared final.

— It never occurs as the left hand side in an assignment expression (§15.26).
(Note that the local variable declarator containing the initializer is not an
assignment expression.)

— It never occurs as the operand of a prefix or postfix increment or decrement
operator (§15.14, §15.15).

* A local variable whose declarator lacks an initializer is effectively final if all of
the following are true:
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— It is not declared final.

— Whenever it occurs as the left hand side in an assignment expression, it is
definitely unassigned and not definitely assigned before the assignment; that
is, it is definitely unassigned and not definitely assigned after the right hand
side of the assignment expression (§16 (Definite Assignment)).

— It never occurs as the operand of a prefix or postfix increment or decrement
operator.

* A method, constructor, lambda, or exception parameter (§8.4.1, §8.8.1, §9.4,
§15.27.1, §14.20) is treated, for the purpose of determining whether it is
effectively final, as a local variable whose declarator has an initializer.

If a variable is effectively final, adding the final modifier to its declaration will
not introduce any compile-time errors. Conversely, a local variable or parameter
that is declared final in a valid program becomes effectively final if the £inal
modifier is removed.

4.12.5 Initial Values of Variables

Every variable in a program must have a value before its value is used:

* Each class variable, instance variable, or array component is initialized with a
default value when it is created (§15.9, §15.10.2):

— For type byte, the default value is zero, that is, the value of (byte)o.

— For type short, the default value is zero, that is, the value of (short)o0.
— For type int, the default value is zero, that is, 0.

— For type long, the default value is zero, that is, 0L.

— For type £loat, the default value is positive zero, that is, 0.0£.

— For type double, the default value is positive zero, that is, 0. 0d.

— For type char, the default value is the null character, that is, ' \u0000".
— For type boolean, the default value is false.

— For all reference types (§4.3), the default value is null.

* Each method parameter (§8.4.1) is initialized to the corresponding argument
value provided by the invoker of the method (§15.12).

4.12
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» Each constructor parameter (§8.8.1) is initialized to the corresponding argument
value provided by a class instance creation expression (§15.9) or explicit
constructor invocation (§8.8.7).

* An exception parameter (§14.20) is initialized to the thrown object representing
the exception (§11.3, §14.18).

* A local variable (§14.4, §14.14) must be explicitly given a value before it is
used, by either initialization (§14.4) or assignment (§15.26), in a way that can be
verified using the rules for definite assignment (§16 (Definite Assignment)).

Example 4.12.5-1. Initial Values of Variables

class Point {
static int npoints;
int x, y;
Point root;

}

class Test {
public static void main(String[] args) {
System.out.println("npoints=" + Point.npoints);
Point p = new Point();
System.out.println("p.x=" + p.x + ", p.y=" + p.y);
System.out.println("p.root=" + p.root);

}
This program prints:

npoints=0
p.x=0, p.y=0
p.root=null

illustrating the default initialization of npoints, which occurs when the class Point is
prepared (§12.3.2), and the default initialization of %, y, and root, which occurs when a new
Point is instantiated. See §12 (Execution) for a full description of all aspects of loading,
linking, and initialization of classes and interfaces, plus a description of the instantiation
of classes to make new class instances.

4.12.6 Types, Classes, and Interfaces

In the Java programming language, every variable and every expression has a type
that can be determined at compile time. The type may be a primitive type or a
reference type. Reference types include class types and interface types. Reference
types are introduced by type declarations, which include class declarations (§8.1)
and interface declarations (§9.1). We often use the term fype to refer to either a
class or an interface.
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In the Java Virtual Machine, every object belongs to some particular class: the class
that was mentioned in the creation expression that produced the object (§15.9), or
the class whose class object was used to invoke a reflective method to produce the
object, or the string class for objects implicitly created by the string concatenation
operator + (§15.18.1). This class is called the class of the object. An object is said
to be an instance of its class and of all superclasses of its class.

Every array also has a class. The method getclass, when invoked for an array
object, will return a class object (of class class) that represents the class of the
array (§10.8).

The compile-time type of a variable is always declared, and the compile-time type
of an expression can be deduced at compile time. The compile-time type limits the
possible values that the variable can hold at run time or the expression can produce
at run time. If a run-time value is a reference that is not null, it refers to an object
or array that has a class, and that class will necessarily be compatible with the
compile-time type.

Even though a variable or expression may have a compile-time type that is an
interface type, there are no instances of interfaces. A variable or expression whose
type is an interface type can reference any object whose class implements (§8.1.5)
that interface.

Sometimes a variable or expression is said to have a "run-time type". This refers
to the class of the object referred to by the value of the variable or expression at
run time, assuming that the value is not null.

The correspondence between compile-time types and run-time types is incomplete
for two reasons:

1. Atruntime,classes and interfaces are loaded by the Java Virtual Machine using
class loaders. Each class loader defines its own set of classes and interfaces.
As aresult, it is possible for two loaders to load an identical class or interface
definition but produce distinct classes or interfaces at run time. Consequently,
code that compiled correctly may fail at link time if the class loaders that load
it are inconsistent.

See the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng Liang
and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices, Volume 33, Number 10, October 1998, pages 36-44, and The Java Virtual
Machine Specification, Java SE 8 Edition for more details.

2. Type variables (§4.4) and type arguments (§4.5.1) are not reified at run
time. As a result, the same class or interface at run time represents multiple
parameterized types (§4.5) from compile time. Specifically, all compile-time
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parameterizations of a given generic type (§8.1.2, §9.1.2) share a single run-
time representation.

Under certain conditions, it is possible that a variable of a parameterized type refers
to an object that is not of that parameterized type. This situation is known as heap
pollution (§4.12.2). The variable will always refer to an object that is an instance of
a class that represents the parameterized type.

Example 4.12.6-1. Type of a Variable versus Class of an Object

interface Colorable {
void setColor(byte r, byte g, byte b);
}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
byte r, g, b;
public void setColor(byte rv, byte gv, byte bv) {
r = rv; g = gv; b = bv;
}
}

class Test {
public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();
p = cp;
Colorable c = cp;

In this example:

* The local variable p of the method main of class Test has type Point and is initially
assigned a reference to a new instance of class Point.

* The local variable cp similarly has as its type ColoredPoint, and is initially assigned
a reference to a new instance of class ColoredPoint.

* The assignment of the value of cp to the variable p causes p to hold a reference
to a ColoredPoint object. This is permitted because ColoredpPoint is a subclass
of Point, so the class ColoredPoint is assignment-compatible (§5.2) with the type
Point. A ColoredPoint object includes support for all the methods of a Point. In
addition to its particular fields r, g, and b, it has the fields of class Point,namely x and y.

* The local variable ¢ has as its type the interface type Colorable, so it can hold a
reference to any object whose class implements Colorable; specifically, it can hold a
reference to a ColoredPoint.

Note that an expression such as new Colorable() is not valid because it is not possible
to create an instance of an interface, only of a class. However, the expression new
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Colorable() { public void setColor... } is valid because it declares an
anonymous class (§15.9.5) that implements the Colorable interface.
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Conversions and Contexts

EVERY expression written in the Java programming language either produces no
result (§15.1) or has a type that can be deduced at compile time (§15.3). When an
expression appears in most contexts, it must be compatible with a type expected in
that context; this type is called the target type. For convenience, compatibility of
an expression with its surrounding context is facilitated in two ways:

* First, for some expressions, termed poly expressions (§15.2), the deduced type
can be influenced by the target type. The same expression can have different
types in different contexts.

» Second, after the type of the expression has been deduced, an implicit conversion
from the type of the expression to the target type can sometimes be performed.

If neither strategy is able to produce the appropriate type, a compile-time error
occurs.

The rules determining whether an expression is a poly expression, and if so, its type
and compatibility in a particular context, vary depending on the kind of context and
the form of the expression. In addition to influencing the type of the expression,
the target type may in some cases influence the run time behavior of the expression
in order to produce a value of the appropriate type.

Similarly, the rules determining whether a target type allows an implicit conversion
vary depending on the kind of context, the type of the expression, and, in one special
case, the value of a constant expression (§15.28). A conversion from type s to type
T allows an expression of type s to be treated at compile time as if it had type T
instead. In some cases this will require a corresponding action at run time to check
the validity of the conversion or to translate the run-time value of the expression
into a form appropriate for the new type T.

93



94

CONVERSIONS AND CONTEXTS

Example 5.0-1. Conversions at Compile Time and Run Time

* A conversion from type Object to type Thread requires a run-time check to make sure
that the run-time value is actually an instance of class Thread or one of its subclasses;
if it is not, an exception is thrown.

* A conversion from type Thread to type Object requires no run-time action; Thread
is a subclass of Object, so any reference produced by an expression of type Thread is
a valid reference value of type Object.

* A conversion from type int to type long requires run-time sign-extension of a 32-bit
integer value to the 64-bit long representation. No information is lost.

* A conversion from type double to type long requires a non-trivial translation from a
64-bit floating-point value to the 64-bit integer representation. Depending on the actual
run-time value, information may be lost.

The conversions possible in the Java programming language are grouped into
several broad categories:

Identity conversions

Widening primitive conversions
Narrowing primitive conversions
Widening reference conversions
Narrowing reference conversions
Boxing conversions

Unboxing conversions
Unchecked conversions

Capture conversions

String conversions

Value set conversions

There are six kinds of conversion contexts in which poly expressions may be
influenced by context or implicit conversions may occur. Each kind of context has
different rules for poly expression typing and allows conversions in some of the
categories above but not others. The contexts are:

Assignment contexts (§5.2, §15.26), in which an expression's value is bound to
a named variable. Primitive and reference types are subject to widening, values
may be boxed or unboxed, and some primitive constant expressions may be
subject to narrowing. An unchecked conversion may also occur.
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* Strict invocation contexts (§5.3, §15.9, §15.12), in which an argument is bound
to a formal parameter of a constructor or method. Widening primitive, widening
reference, and unchecked conversions may occur.

¢ Loose invocation contexts (§5.3, §15.9, §15.12), in which, like strict invocation
contexts, an argument is bound to a formal parameter. Method or constructor
invocations may provide this context if no applicable declaration can be found
using only strict invocation contexts. In addition to widening and unchecked
conversions, this context allows boxing and unboxing conversions to occur.

* String contexts (§5.4, §15.18.1), in which a value of any type is converted to an
object of type String.

» Casting contexts (§5.5), in which an expression's value is converted to a type
explicitly specified by a cast operator (§15.16). Casting contexts are more
inclusive than assignment or loose invocation contexts, allowing any specific
conversion other than a string conversion, but certain casts to a reference type
are checked for correctness at run time.

* Numeric contexts (§5.6), in which the operands of a numeric operator may be
widened to a common type so that an operation can be performed.

The term "conversion" is also used to describe, without being specific, any
conversions allowed in a particular context. For example, we say that an expression
that is the initializer of a local variable is subject to "assignment conversion",
meaning that a specific conversion will be implicitly chosen for that expression
according to the rules for the assignment context.

Example 5.0-2. Conversions In Various Contexts

class Test {
public static void main(String[] args) {
// Casting conversion (5.4) of a float literal to
// type int. Without the cast operator, this would
// be a compile-time error, because this is a
// narrowing conversion (5.1.3):
int i = (int)12.5f;

// String conversion (5.4) of i's int value:
System.out.println("(int)12.5f==" + 1i);

// Assignment conversion (5.2) of i's value to type
// float. This is a widening conversion (5.1.2):

float £ = i;

// String conversion of f's float value:
System.out.println("after float widening: " + f);

// Numeric promotion (5.6) of i's value to type
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// float. This is a binary numeric promotion.

// After promotion, the operation is float*float:
System.out.print(f);

f=f*1i;

// Two string conversions of i and f:
System.out.println("*" + i + "==" + f);

// Invocation conversion (5.3) of f's value
// to type double, needed because the method Math.sin
// accepts only a double argument:

double d = Math.sin(f);

// Two string conversions of f and d:
System.out.println("Math.sin(" + £ + ")==" + d);

This program produces the output:

(int)12.5f==12

after float widening: 12.0
12.0%12==144.0
Math.sin(144.0)==-0.49102159389846934

5.1 Kinds of Conversion

Specific type conversions in the Java programming language are divided into 13
categories.

5.1.1 Identity Conversion

A conversion from a type to that same type is permitted for any type.

This may seem trivial, but it has two practical consequences. First, it is always permitted
for an expression to have the desired type to begin with, thus allowing the simply stated rule
that every expression is subject to conversion, if only a trivial identity conversion. Second,
it implies that it is permitted for a program to include redundant cast operators for the sake
of clarity.

5.1.2 Widening Primitive Conversion

19 specific conversions on primitive types are called the widening primitive
CONVersions:

®* byte to short, int, long, float, Or double
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® short t0 int, long, float, Or double
® char to int, long, float, Or double
® int to long, float, Or double

®* long to float Or double

® float to double

A widening primitive conversion does not lose information about the overall
magnitude of a numeric value in the following cases, where the numeric value is
preserved exactly:

* from an integral type to another integral type

* from byte, short, or char to a floating point type

* from int to double

* from float to double in a strictfp expression (§15.4)

A widening primitive conversion from float to double that is not strictfp may
lose information about the overall magnitude of the converted value.

A widening primitive conversion from int to float, or from long to float, or
from long to double, may result in loss of precision - that is, the result may lose
some of the least significant bits of the value. In this case, the resulting floating-
point value will be a correctly rounded version of the integer value, using IEEE
754 round-to-nearest mode (§4.2.4).

A widening conversion of a signed integer value to an integral type T simply sign-
extends the two's-complement representation of the integer value to fill the wider
format.

A widening conversion of a char to an integral type T zero-extends the
representation of the char value to fill the wider format.

Despite the fact that loss of precision may occur, a widening primitive conversion
never results in a run-time exception (§11.1.1).

Example 5.1.2-1. Widening Primitive Conversion

class Test {
public static void main(String[] args) {
int big = 1234567890;
float approx = big;
System.out.println(big - (int)approx);

5.1
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This program prints:
-46

thus indicating that information was lost during the conversion from type int to type £loat
because values of type £1oat are not precise to nine significant digits.

5.1.3 Narrowing Primitive Conversion

22 specific conversions on primitive types are called the narrowing primitive
conversions:

® short to byte Or char

® char to byte Or short

® int to byte, short, Or char

®* long to byte, short, char, Or int

® float to byte, short, char, int, Or long

®* double to byte, short, char, int, long, Or float

A narrowing primitive conversion may lose information about the overall
magnitude of a numeric value and may also lose precision and range.

A narrowing primitive conversion from double to £loat is governed by the IEEE
754 rounding rules (§4.2.4). This conversion can lose precision, but also lose range,
resulting in a £loat zero from a nonzero double and a £loat infinity from a finite
double. A double NaN is converted to a float NaN and a double infinity is
converted to the same-signed float infinity.

A narrowing conversion of a signed integer to an integral type T simply discards
all but the n lowest order bits, where 7 is the number of bits used to represent type
7. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the sign of the resulting value to differ from the sign of the
input value.

A narrowing conversion of a char to an integral type T likewise simply discards
all but the n lowest order bits, where 7 is the number of bits used to represent type
7. In addition to a possible loss of information about the magnitude of the numeric
value, this may cause the resulting value to be a negative number, even though
chars represent 16-bit unsigned integer values.

A narrowing conversion of a floating-point number to an integral type T takes two
steps:



CONVERSIONS AND CONTEXTS Kinds of Conversion

1. In the first step, the floating-point number is converted either to a long, if Tis
long, or to an int, if Tis byte, short, char, or int, as follows:

* If the floating-point number is NaN (§4.2.3), the result of the first step of the
conversion is an int or long 0.

* Otherwise, if the floating-point number is not an infinity, the floating-point
value is rounded to an integer value v, rounding toward zero using IEEE 754
round-toward-zero mode (§4.2.3). Then there are two cases:

a. If Tis long, and this integer value can be represented as a long, then the
result of the first step is the long value v.

b. Otherwise, if this integer value can be represented as an int, then the
result of the first step is the int value v.

* Otherwise, one of the following two cases must be true:

a. The value must be too small (a negative value of large magnitude
or negative infinity), and the result of the first step is the smallest
representable value of type int or long.

b. The value must be too large (a positive value of large magnitude
or positive infinity), and the result of the first step is the largest
representable value of type int or long.

2. In the second step:
e If ris int or long, the result of the conversion is the result of the first step.

e If Tis byte, char, or short, the result of the conversion is the result of a
narrowing conversion to type T (§5.1.3) of the result of the first step.

Despite the fact that overflow, underflow, or other loss of information may occur,
a narrowing primitive conversion never results in a run-time exception (§11.1.1).

Example 5.1.3-1. Narrowing Primitive Conversion

class Test {
public static void main(String[] args) {
float fmin = Float.NEGATIVE_INFINITY;
float fmax = Float.POSITIVE_ INFINITY;

System.out.println("long: " + (long)fmin +

".." + (long)fmax);
System.out.println("int: " + (int)fmin +

".." + (int)fmax);
System.out.println("short: " + (short)fmin +

".." + (short)fmax);
System.out.println("char: " + (int)(char)fmin +

".." + (int) (char)fmax);
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System.out.println("byte: " + (byte)fmin +
".." + (byte)fmax);

This program produces the output:

long: -9223372036854775808..9223372036854775807
int: -2147483648..2147483647

short: 0..-1

char: 0..65535

byte: 0..-1

The results for char, int, and long are unsurprising, producing the minimum and
maximum representable values of the type.

The results for byte and short lose information about the sign and magnitude of the
numeric values and also lose precision. The results can be understood by examining the
low order bits of the minimum and maximum int. The minimum int is, in hexadecimal,
0x80000000, and the maximum intis 0x7£££££££. This explains the short results, which
are the low 16 bits of these values, namely, 0x0000 and 0x£ £ £ £; it explains the char results,
which also are the low 16 bits of these values, namely, '\u0000"' and '\uff£ff'; and it
explains the byte results, which are the low 8 bits of these values, namely, 0x00 and 0x££.

Example 5.1.3-2. Narrowing Primitive Conversions that lose information

class Test {
public static void main(String[] args) {
// A narrowing of int to short loses high bits:
System.out.println(" (short)0x12345678==0x" +

Integer.toHexString((short)0x12345678));
// An int value too big for byte changes sign and magnitude:

System.out.println(" (byte)255==" + (byte)255);

// A float value too big to fit gives largest int value:
System.out.println("(int)le20f==" + (int)1le20f);

// A NaN converted to int yields zero:
System.out.println(" (int)NaN==" + (int)Float.NaN);

// A double value too large for float yields infinity:
System.out.println("(float)-1el100==" + (float)-1el00);

// A double value too small for float underflows to zero:
System.out.println("(float)le-50==" + (float)le-50);

This program produces the output:

CONVERSIONS AND CONTEXTS
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(short)0x12345678==0x5678
(byte)255==-
(int)1e20£f==2147483647
(int)NaN==
(float)-1el00==-Infinity
(float)le-50==0.0

5.1.4 Widening and Narrowing Primitive Conversion

The following conversion combines both widening and narrowing primitive
conversions:

* byte to char

First, the byte is converted to an int via widening primitive conversion (§5.1.2),
and then the resulting int is converted to a char by narrowing primitive conversion
(§5.1.3).

5.1.5 Widening Reference Conversion

A widening reference conversion exists from any reference type s to any reference
type T, provided s is a subtype (§4.10) of T.

Widening reference conversions never require a special action at run time and
therefore never throw an exception at run time. They consist simply in regarding
a reference as having some other type in a manner that can be proved correct at
compile time.

5.1.6 Narrowing Reference Conversion

Six kinds of conversions are called the narrowing reference conversions:

* From any reference type s to any reference type T, provided that s is a proper
supertype of T (§4.10).

An important special case is that there is a narrowing reference conversion from
the class type object to any other reference type (§4.12.4).

* From any class type ¢ to any non-parameterized interface type x, provided that
cis not final and does not implement k.

* From any interface type Jto any non-parameterized class type cthatis not final.

* From any interface type J to any non-parameterized interface type x, provided
that 7 is not a subinterface of x.

5.1
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* From the interface types Cloneable and java.io.Serializable to any array
type T[ 1.

* From any array type sc[ ] to any array type Tc| ], provided that sc and Tc are
reference types and there is a narrowing reference conversion from sc to 7c.

Such conversions require a test at run time to find out whether the actual reference
value is a legitimate value of the new type. If not, then a classCastException is
thrown.

5.1.7 Boxing Conversion

Boxing conversion converts expressions of primitive type to corresponding
expressions of reference type. Specifically, the following nine conversions are
called the boxing conversions:

* From type boolean to type Boolean
¢ From type byte to type Byte

* From type short to type Short

* From type char to type Character
* From type int to type Integer

* From type long to type Long

* From type float to type Float

¢ From type double to type Double

* From the null type to the null type

This rule is necessary because the conditional operator (§15.25) applies boxing
conversion to the types of its operands, and uses the result in further calculations.

At run time, boxing conversion proceeds as follows:

* If pis avalue of type boolean, then boxing conversion converts p into a reference
r of class and type Boolean, such that r.booleanvalue() == p

 If pis a value of type byte, then boxing conversion converts p into a reference
r of class and type Byte, such that r.bytevalue() == p

 If pis a value of type char, then boxing conversion converts p into a reference
rof class and type Character, such that r.charvalue() == p

* If pis a value of type short, then boxing conversion converts p into a reference
r of class and type short, such that r.shortvalue() ==
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 If pis a value of type int, then boxing conversion converts p into a reference r
of class and type Integer, such that r.intvalue() == p

* If pis a value of type long, then boxing conversion converts p into a reference
r of class and type Long, such that r.longvalue() == p

* If pis avalue of type £loat then:

— If pis not NaN, then boxing conversion converts p into a reference r of class
and type Float, such that r.floatvalue() evaluates to p

— Otherwise, boxing conversion converts p into a reference r of class and type
Float such that r.isNaN() evaluates to true

* If pis a value of type double, then:

— If p is not NaN, boxing conversion converts p into a reference r of class and
type Double, such that r.doublevalue() evaluates to p

— Otherwise, boxing conversion converts p into a reference r of class and type
Double such that r.isNaN () evaluates to true

* If pis a value of any other type, boxing conversion is equivalent to an identity
conversion (§5.1.1).

If the value p being boxed is an integer literal of type int between -128 and 127
inclusive (§3.10.1), or the boolean literal true or false (§3.10.3), or a character
literal between '\u0000"' and '\u007£"' inclusive (§3.10.4), then let a and b be the
results of any two boxing conversions of p. It is always the case that a == b.

Ideally, boxing a primitive value would always yield an identical reference. In practice, this
may not be feasible using existing implementation techniques. The rule above is a pragmatic
compromise, requiring that certain common values always be boxed into indistinguishable
objects. The implementation may cache these, lazily or eagerly. For other values, the rule
disallows any assumptions about the identity of the boxed values on the programmer's part.
This allows (but does not require) sharing of some or all of these references. Notice that
integer literals of type long are allowed, but not required, to be shared.

This ensures that in most common cases, the behavior will be the desired one, without
imposing an undue performance penalty, especially on small devices. Less memory-limited
implementations might, for example, cache all char and short values, as well as int and
long values in the range of -32K to +32K.

A boxing conversion may result in an outOfMemoryError if a new instance of one
of the wrapper classes (Boolean, Byte, Character, Short, Integer, Long, Float,
or Double) needs to be allocated and insufficient storage is available.

5.1
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5.1.8 Unboxing Conversion

Unboxing conversion converts expressions of reference type to corresponding
expressions of primitive type. Specifically, the following eight conversions are
called the unboxing conversions:

From type Boolean to type boolean
From type Byte to type byte

From type short to type short
From type character to type char
From type Integer to type int
From type Long to type long

From type Float to type float

From type Double to type double

At run time, unboxing conversion proceeds as follows:

If r is a reference of type Boolean, then unboxing conversion converts r into
r.booleanValue()

If r is a reference of type Byte, then unboxing conversion converts r into
r.bytevValue()

If r is a reference of type character, then unboxing conversion converts r into
r.charValue()

If r is a reference of type short, then unboxing conversion converts r into
r.shortvalue()

If r is a reference of type Integer, then unboxing conversion converts r into
r.intvalue()

If r is a reference of type Long, then unboxing conversion converts r into
r.longValue()

If r is a reference of type Float, unboxing conversion converts r into
r.floatValue()

If r is a reference of type Double, then unboxing conversion converts r into
r.doubleValue()

If ris null, unboxing conversion throws a NullPointerException
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A type is said to be convertible to a numeric type if it is a numeric type (§4.2), or it is
a reference type that may be converted to a numeric type by unboxing conversion.

A type is said to be convertible to an integral type if it is an integral type, or it is a
reference type that may be converted to an integral type by unboxing conversion.

5.1.9 Unchecked Conversion

Let ¢ name a generic type declaration with n type parameters.

There is an unchecked conversion from the raw class or interface type (§4.8) 6 to
any parameterized type of the form e<T;,...,T>.

There is an unchecked conversion from the raw array type G[ 1*to any array type of
the form 6<1;,...,T> [ ]k. (The notation [ ]k indicates an array type of k dimensions.)

Use of an unchecked conversion causes a compile-time unchecked warning unless
all type arguments T; (1 =i < n) are unbounded wildcards (§4.5.1), or the unchecked
warning is suppressed by the SuppresswWarnings annotation (§9.6.4.5).

Unchecked conversion is used to enable a smooth interoperation of legacy code, written
before the introduction of generic types, with libraries that have undergone a conversion
to use genericity (a process we call generification). In such circumstances (most notably,
clients of the Collections Framework in java.util), legacy code uses raw types (e.g.
Collection instead of Collection<String>). Expressions of raw types are passed as
arguments to library methods that use parameterized versions of those same types as the
types of their corresponding formal parameters.

Such calls cannot be shown to be statically safe under the type system using generics.
Rejecting such calls would invalidate large bodies of existing code, and prevent them from
using newer versions of the libraries. This in turn, would discourage library vendors from
taking advantage of genericity. To prevent such an unwelcome turn of events, a raw type
may be converted to an arbitrary invocation of the generic type declaration to which the raw
type refers. While the conversion is unsound, it is tolerated as a concession to practicality.
An unchecked warning is issued in such cases.

5.1.10 Capture Conversion

Let ¢ name a generic type declaration (§8.1.2, §9.1.2) with n type parameters
Ajp,...,A, With corresponding bounds uy,...,U,.

There exists a capture conversion from a parameterized type G<Ti,...,T,> (§4.5) to
a parameterized type G<Sj,...,S;>, where, for l =i<n:

e If 7; is a wildcard type argument (§4.5.1) of the form 2, then s; is a fresh type
variable whose upper bound is U;[A;:=S;, . . . ,A,:=5,] and whose lower bound
is the null type (§4.1).
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e If 7; is a wildcard type argument of the form 2 extends B;, then s; is a fresh
type variable whose upper bound is glb(B;, U;[A;:=5], . .. ,A,:=5,]) and whose
lower bound is the null type.

glb(vy,...,v,) is defined as v; & ... & vy,

It is a compile-time error if, for any two classes (not interfaces) v; and v;, v; is
not a subclass of v; or vice versa.

e If 7; is a wildcard type argument of the form ? super B;, then s; is a fresh type
variable whose upper bound is U;[A;:=5, . .., A,:=5,] and whose lower bound
is B;.

¢ Otherwise, s; = T;.

Capture conversion on any type other than a parameterized type (§4.5) acts as an
identity conversion (§5.1.1).

Capture conversion is not applied recursively.

Capture conversion never requires a special action at run time and therefore never
throws an exception at run time.

Capture conversion is designed to make wildcards more useful. To understand the
motivation, let's begin by looking at the method java.util.Collections.reverse():

public static void reverse(List<?> list);

The method reverses the list provided as a parameter. It works for any type of list, and so the
use of the wildcard type List<?> as the type of the formal parameter is entirely appropriate.

Now consider how one would implement reverse():

public static void reverse(List<?> list) { rev(list); }
private static <T> void rev(List<T> list) {
List<T> tmp = new ArrayList<T>(list);
for (int i = 0; i < list.size(); i++) {
list.set(i, tmp.get(list.size() - i - 1));
}

The implementation needs to copy the list, extract elements from the copy, and insert them
into the original. To do this in a type-safe manner, we need to give a name, T, to the element
type of the incoming list. We do this in the private service method rev (). This requires us
to pass the incoming argument list, of type List<?>, as an argument to rev (). In general,
List<?>is alist of unknown type. It is not a subtype of List<T>, for any type T. Allowing
such a subtype relation would be unsound. Given the method:

public static <T> void £ill(List<T> 1, T obj)
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the following code would undermine the type system:

List<String> ls = new ArrayList<String>();
List<?> 1 = 1ls;
Collections.fill(1l, new Object()); // not legal - but assume it was!
String s = ls.get(0); // ClassCastException - ls contains
// Objects, not Strings.

So, without some special dispensation, we can see that the call from reverse() to rev()
would be disallowed. If this were the case, the author of reverse () would be forced to
write its signature as:

public static <T> void reverse(List<T> list)

This is undesirable, as it exposes implementation information to the caller. Worse, the
designer of an API might reason that the signature using a wildcard is what the callers of
the API require, and only later realize that a type safe implementation was precluded.

The call from reverse() to rev() is in fact harmless, but it cannot be justified on the
basis of a general subtyping relation between List<?> and List<T>. The call is harmless,
because the incoming argument is doubtless a list of some type (albeit an unknown one). If
we can capture this unknown type in a type variable X, we can infer T to be X. That is the
essence of capture conversion. The specification of course must cope with complications,
like non-trivial (and possibly recursively defined) upper or lower bounds, the presence of
multiple arguments etc.

Mathematically sophisticated readers will want to relate capture conversion to established
type theory. Readers unfamiliar with type theory can skip this discussion - or else study a
suitable text, such as Types and Programming Languages by Benjamin Pierce, and then
revisit this section.

Here then is a brief summary of the relationship of capture conversion to established
type theoretical notions. Wildcard types are a restricted form of existential types. Capture
conversion corresponds loosely to an opening of a value of existential type. A capture
conversion of an expression e can be thought of as an open of e in a scope that comprises
the top level expression that encloses e.

The classical open operation on existentials requires that the captured type variable must
not escape the opened expression. The open that corresponds to capture conversion is
always on a scope sufficiently large that the captured type variable can never be visible
outside that scope. The advantage of this scheme is that there is no need for a close
operation, as defined in the paper On Variance-Based Subtyping for Parametric Types by
Atsushi Igarashi and Mirko Viroli, in the proceedings of the 16th European Conference on
Object Oriented Programming (ECOOP 2002). For a formal account of wildcards, see Wild
FJ by Mads Torgersen, Erik Ernst and Christian Plesner Hansen, in the 12th workshop on
Foundations of Object Oriented Programming (FOOL 2005).

5.1.11 String Conversion

Any type may be converted to type string by string conversion.
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A value x of primitive type T is first converted to a reference value as if by giving
it as an argument to an appropriate class instance creation expression (§15.9):

e If Tis boolean, then use new Boolean(x).

e If Tis char, then use new Character(x).

e If TiS byte, short, or int, then use new Integer(x).

e If Tis long, then use new Long(x).

e If Tis float, then use new Float(x).

e If Tis double, then use new Double(x).

This reference value is then converted to type String by string conversion.
Now only reference values need to be considered:

* Ifthe reference is null,itis converted to the string "null" (four ASCII characters
n,u,l, l).

* Otherwise, the conversion is performed as if by an invocation of the tostring
method of the referenced object with no arguments; but if the result of invoking
the tostring method is null, then the string "null" is used instead.

The tostring method is defined by the primordial class Object (§4.3.2). Many
classes override it, notably Boolean, Character, Integer, Long, Float, Double,
and String.

See §5.4 for details of the string context.

5.1.12 Forbidden Conversions

Any conversion that is not explicitly allowed is forbidden.

5.1.13 Value Set Conversion

Value set conversion is the process of mapping a floating-point value from one
value set to another without changing its type.

Within an expression that is not FP-strict (§15.4), value set conversion provides
choices to an implementation of the Java programming language:

e If the value is an element of the float-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
float value set. This conversion may result in overflow (in which case the value
is replaced by an infinity of the same sign) or underflow (in which case the value
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may lose precision because it is replaced by a denormalized number or zero of
the same sign).

e If the value is an element of the double-extended-exponent value set, then the
implementation may, at its option, map the value to the nearest element of the
double value set. This conversion may result in overflow (in which case the value
is replaced by an infinity of the same sign) or underflow (in which case the value
may lose precision because it is replaced by a denormalized number or zero of
the same sign).

Within an FP-strict expression (§15.4), value set conversion does not provide any
choices; every implementation must behave in the same way:

* If the value is of type float and is not an element of the float value set, then the
implementation must map the value to the nearest element of the float value set.
This conversion may result in overflow or underflow.

e If the value is of type double and is not an element of the double value set, then
the implementation must map the value to the nearest element of the double value
set. This conversion may result in overflow or underflow.

Within an FP-strict expression, mapping values from the float-extended-exponent
value set or double-extended-exponent value set is necessary only when a method
is invoked whose declaration is not FP-strict and the implementation has chosen to
represent the result of the method invocation as an element of an extended-exponent
value set.

Whether in FP-strict code or code that is not FP-strict, value set conversion always
leaves unchanged any value whose type is neither £loat nor double.

5.2 Assignment Contexts

Assignment contexts allow the value of an expression to be assigned (§15.26) to a
variable; the type of the expression must be converted to the type of the variable.

Assignment contexts allow the use of one of the following:
* an identity conversion (§5.1.1)

* a widening primitive conversion (§5.1.2)

* a widening reference conversion (§5.1.5)

* a boxing conversion (§5.1.7) optionally followed by a widening reference
conversion
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* an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion.

If, after the conversions listed above have been applied, the resulting type is a raw
type (§4.8), an unchecked conversion (§5.1.9) may then be applied.

In addition, if the expression is a constant expression (§15.28) of type byte, short,
char, Or int:

* A narrowing primitive conversion may be used if the type of the variable is byte,
short, or char, and the value of the constant expression is representable in the
type of the variable.

* A narrowing primitive conversion followed by a boxing conversion may be used
if the type of the variable is:

— Byte and the value of the constant expression is representable in the type byte.

— short and the value of the constant expression is representable in the type
short.

— Character and the value of the constant expression is representable in the type

char.
The compile-time narrowing of constant expressions means that code such as:
byte theAnswer = 42;

is allowed. Without the narrowing, the fact that the integer literal 42 has type int would
mean that a cast to byte would be required:

byte theAnswer = (byte)42; // cast is permitted but not required

Finally, a value of the null type (the null reference is the only such value) may be
assigned to any reference type, resulting in a null reference of that type.

It is a compile-time error if the chain of conversions contains two parameterized

types that are not in the subtype relation (§4.10).

An example of such an illegal chain would be:
Integer, Comparable<Integer>, Comparable, Comparable<String>

The first three elements of the chain are related by widening reference conversion, while
the last entry is derived from its predecessor by unchecked conversion. However, this is
not a valid assignment conversion, because the chain contains two parameterized types,
Comparable<Integer> and Comparable<String>, that are not subtypes.
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If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.

If the type of an expression can be converted to the type of a variable by assignment
conversion, we say the expression (or its value) is assignable to the variable or,
equivalently, that the type of the expression is assignment compatible with the type
of the variable.

If the type of the variable is f1loat or double, then value set conversion (§5.1.13)
is applied to the value v that is the result of the conversion(s):

* If vis of type £loat and is an element of the float-extended-exponent value set,
then the implementation must map v to the nearest element of the float value set.
This conversion may result in overflow or underflow.

e If vis of type double and is an element of the double-extended-exponent value
set, then the implementation must map v to the nearest element of the double
value set. This conversion may result in overflow or underflow.

The only exceptions that may arise from conversions in an assignment context are:

* A classCastException if, after the conversions above have been applied, the
resulting value is an object which is not an instance of a subclass or subinterface
of the erasure (§4.6) of the type of the variable.

This circumstance can only arise as a result of heap pollution (§4.12.2). In practice,
implementations need only perform casts when accessing a field or method of an object
of parameterized type when the erased type of the field, or the erased return type of the
method, differ from its unerased type.

* An outOfMemoryError as a result of a boxing conversion.

* A NullPointerException as a result of an unboxing conversion on a null
reference.

* An ArrayStoreException in special cases involving array elements or field
access (§10.5, §15.26.1).

Example 5.2-1. Assignment Conversion for Primitive Types

class Test {
public static void main(String[] args) {

short s = 12; // narrow 12 to short

float f = s; // widen short to float
System.out.println("f=" + £f);

char ¢ = '\u0123';

long 1 = c; // widen char to long
System.out.println("1=0x" + Long.toString(l,16));
f = 1.23f;

double d = f; // widen float to double
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System.out.println("d=" + d);

This program produces the output:

£f=12.0
1=0x123
d=1.2300000190734863

The following program, however, produces compile-time errors:

class Test {
public static void main(String[] args) {
short s = 123;
char c = s; // error: would require cast
s = c; // error: would require cast

because not all short values are char values, and neither are all char values short values.

Example 5.2-2. Assignment Conversion for Reference Types

class Point { int x, y; }
class Point3D extends Point { int z; }
interface Colorable { void setColor(int color); }

class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }

class Test {
public static void main(String[] args) {

// Assignments to variables of class type:

Point p = new Point();

p = new Point3D();
// OK because Point3D is a subclass of Point

Point3D p3d = p;
// Error: will require a cast because a Point
// might not be a Point3D (even though it is,
// dynamically, in this example.)

// Assignments to variables of type Object:

Object o = p; // OK: any object to Object
int[] a = new int[3];
Object 02 = a; // OK: an array to Object

// Assignments to variables of interface type:
ColoredPoint cp = new ColoredPoint();
Colorable ¢ = cp;
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// OK: ColoredPoint implements Colorable

// Assignments to variables of array type:
byte[] b = new byte[4];
a = b;
// Error: these are not arrays of the same primitive type
Point3D[] p3da = new Point3D[3];
Point[] pa = p3da;
// OK: since we can assign a Point3D to a Point
p3da = pa;
// Error: (cast needed) since a Point
// can't be assigned to a Point3D

The following test program illustrates assignment conversions on reference values, but fails
to compile, as described in its comments. This example should be compared to the preceding
one.

class Point { int x, y; }
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }

class Test {

public static void main(String[] args) {
Point p = new Point();
ColoredPoint cp = new ColoredPoint();
// Okay because ColoredPoint is a subclass of Point:
p = cp;
// Okay because ColoredPoint implements Colorable:
Colorable c = cp;
// The following cause compile-time errors because
// we cannot be sure they will succeed, depending on
// the run-time type of p; a run-time check will be
// necessary for the needed narrowing conversion and
// must be indicated by including a cast:

cp = p; // p might be neither a ColoredPoint
// nor a subclass of ColoredPoint
c = p; // p might not implement Colorable

Example 5.2-3. Assignment Conversion for Array Types

class Point { int x, y; }
class ColoredPoint extends Point { int color; }

class Test {

public static void main(String[] args) {
long[] veclong = new long[100];
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Object o = veclong; //
Long 1 = veclong; //
short[] vecshort = veclong; //
Point[] pvec = new Point[100];

CONVERSIONS AND CONTEXTS

okay
compile-time error
compile-time error

ColoredPoint[] cpvec = new ColoredPoint[100];

pvec = cpvec; //
pvec[0] = new Point(); //
//
//
cpvec = pvec; //

In this example:

okay

okay at compile time,
but would throw an
exception at run time
compile-time error

* The value of veclong cannot be assigned to a Long variable, because Long is a class
type other than Object. An array can be assigned only to a variable of a compatible
array type, or to a variable of type Object, Cloneable or java.io.Serializable.

* The value of veclong cannot be assigned to vecshort, because they are arrays of
primitive type, and short and long are not the same primitive type.

* The value of cpvec can be assigned to pvec, because any reference that could be the
value of an expression of type ColoredPoint can be the value of a variable of type
point. The subsequent assignment of the new Point to a component of pvec then
would throw an ArrayStoreException (if the program were otherwise corrected so
that it could be compiled), because a ColoredPoint array cannot have an instance of

Point as the value of a component.

* The value of pvec cannot be assigned to cpvec, because not every reference that could
be the value of an expression of type ColoredPoint can correctly be the value of a
variable of type Point. If the value of pvec at run time were a reference to an instance of
Point[ ],and the assignment to cpvec were allowed, a simple reference to a component
of cpvec, say, cpvec[0], could return a Point, and a Point is not a ColoredPoint.
Thus to allow such an assignment would allow a violation of the type system. A cast
may be used (§5.5, §15.16) to ensure that pvec references a ColoredPoint][ ]:

cpvec = (ColoredPoint[])pvec; // OK,

but may throw an

// exception at run time

5.3 Invocation Contexts

Invocation contexts allow an argument value in a method or constructor invocation
(§8.8.7.1,§15.9, §15.12) to be assigned to a corresponding formal parameter.

Strict invocation contexts allow the use of one of the following:

* an identity conversion (§5.1.1)

* a widening primitive conversion (§5.1.2)
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* a widening reference conversion (§5.1.5)

Loose invocation contexts allow a more permissive set of conversions, because
they are only used for a particular invocation if no applicable declaration can be
found using strict invocation contexts. Loose invocation contexts allow the use of
one of the following:

* an identity conversion (§5.1.1)
* a widening primitive conversion (§5.1.2)
* a widening reference conversion (§5.1.5)

* a boxing conversion (§5.1.7) optionally followed by widening reference
conversion

* an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion

If, after the conversions listed for an invocation context have been applied, the
resulting type is a raw type (§4.8), an unchecked conversion (§5.1.9) may then be
applied.

A value of the null type (the null reference is the only such value) may be assigned
to any reference type.

It is a compile-time error if the chain of conversions contains two parameterized
types that are not in the subtype relation (§4.10).

If the type of the expression cannot be converted to the type of the parameter by
a conversion permitted in a loose invocation context, then a compile-time error
occurs.

If the type of an argument expression is either f£loat or double, then value set
conversion (§5.1.13) is applied after the conversion(s):

 If an argument value of type float is an element of the float-extended-exponent
value set, then the implementation must map the value to the nearest element of
the float value set. This conversion may result in overflow or underflow.

e If an argument value of type double is an element of the double-extended-
exponent value set, then the implementation must map the value to the nearest
element of the double value set. This conversion may result in overflow or
underflow.

The only exceptions that may arise in an invocation context are:
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* A classCastException if, after the type conversions above have been applied,
the resulting value is an object which is not an instance of a subclass or
subinterface of the erasure (§4.6) of the corresponding formal parameter type.

* An outOfMemoryError as a result of a boxing conversion.

* A NullPointerException as a result of an unboxing conversion on a null
reference.

Neither strict nor loose invocation contexts include the implicit narrowing of integer
constant expressions which is allowed in assignment contexts. The designers of the Java
programming language felt that including these implicit narrowing conversions would add
additional complexity to the rules of overload resolution (§15.12.2).

Thus, the program:

class Test {
static int m(byte a, int b) { return atb; }
static int m(short a, short b) { return a-b; }
public static void main(String[] args) {
System.out.println(m(12, 2)); // compile-time error

}
}

causes a compile-time error because the integer literals 12 and 2 have type int, so neither
method m matches under the rules of overload resolution. A language that included implicit
narrowing of integer constant expressions would need additional rules to resolve cases like
this example.

5.4 String Contexts

String contexts apply only to an operand of the binary + operator which is not a
String when the other operand is a string.

The target type in these contexts is always string, and a string conversion
(§5.1.11) of the non-string operand always occurs. Evaluation of the + operator
then proceeds as specified in §15.18.1.

5.5 Casting Contexts

Casting contexts allow the operand of a cast operator (§15.16) to be converted to
the type explicitly named by the cast operator.

Casting contexts allow the use of one of:
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an identity conversion (§5.1.1)

a widening primitive conversion (§5.1.2)

a narrowing primitive conversion (§5.1.3)

a widening and narrowing primitive conversion (§5.1.4)

a widening reference conversion (§5.1.5) optionally followed by either an
unboxing conversion (§5.1.8) or an unchecked conversion (§5.1.9)

a narrowing reference conversion (§5.1.6) optionally followed by either an
unboxing conversion (§5.1.8) or an unchecked conversion (§5.1.9)

a boxing conversion (§5.1.7) optionally followed by a widening reference
conversion (§5.1.5)

an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion (§5.1.2).

Value set conversion (§5.1.13) is applied after the type conversion.

The compile-time legality of a casting conversion is as follows:

An expression of a primitive type may undergo casting conversion to another
primitive type, by an identity conversion (if the types are the same), or by a
widening primitive conversion, or by a narrowing primitive conversion, or by a
widening and narrowing primitive conversion.

An expression of a primitive type may undergo casting conversion to a reference
type without error, by boxing conversion.

An expression of a reference type may undergo casting conversion to a primitive
type without error, by unboxing conversion.

An expression of a reference type may undergo casting conversion to another
reference type if no compile-time error occurs given the rules in §5.5.1.

The following tables enumerate which conversions are used in certain casting
conversions. Each conversion is signified by a symbol:

- signifies no casting conversion allowed

= signifies identity conversion (§5.1.1)

o signifies widening primitive conversion (§5.1.2)
1 signifies narrowing primitive conversion (§5.1.3)

o signifies widening and narrowing primitive conversion (§5.1.4)
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* 1 signifies widening reference conversion (§5.1.5)
* | signifies narrowing reference conversion (§5.1.6)
* @ signifies boxing conversion (§5.1.7)

* ® signifies unboxing conversion (§5.1.8)

In the tables, a comma between symbols indicates that a casting conversion uses
one conversion followed by another. The type object means any reference type
other than the eight wrapper classes Boolean, Byte, Short, Character, Integer,
Long, Float, Double.
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Table 5.5-A. Casting conversions to primitive types

Casting Contexts

To — byte short char int long float double boolean
From |

byte ~ ® on » 0 0} 00 )
short n =~ n w w ) w B
char n n ~ w ) [0 w B
int n n n =~ 0 0 w B
long n M n M ~ 0 ) )
float n M n M M = w B
double n n M n M M =~ )
boolean - - - - - - - =
Byte ® ®.,m - ®,m ®,m ®,m ®,w B
Short - - ®,m ®,m ®,m ®,w B
Character - - ® ®,0 ®,w ®,w ®,m .
Integer - - - ® ®,m ®,m ®,w B
Long - - - - ® ®,m ®,w B
Float - - - - - ® ®,m )
Double - - - - - - ® .
Boolean - - - - - - -

Object 1® I® |.® |.® | ® |.® |.® I®
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Table 5.5-B. Casting conversions to reference types

To — Byte Short CharacterInteger Long Float Double Boolean Object
From |

byte ® - - - - - - - x|
short - ® - - - - - - @1
char - - ® - - - - - @4
int - - - ® - - - - @4
long - - - - ® - - - @
float - - - - - ® - - x|
double - - - - - - ® - @4
boolean - - - - - - - ® X
Byte ~ - - - - - - - t
Short - - - - - - - - f
Character - - - - - - - - t
Integer - - - - - - - - t
Long - - - - - - - - f
Float - - - - - - - - t
Double - - - - - - - - 1
Boolean - - - - - - - - 1
Object ! oo I -

5.5.1 Reference Type Casting

Given a compile-time reference type s (source) and a compile-time reference type
T (target), a casting conversion exists from s to T if no compile-time errors occur
due to the following rules.

If sis a class type:
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» If Tis a class type, then either Isl <: I7l, or |7l <: Isl. Otherwise, a compile-time
€ITOr OCCurs.

Furthermore, if there exists a supertype x of T, and a supertype v of s, such
that both x and v are provably distinct parameterized types (§4.5), and that the
erasures of x and v are the same, a compile-time error occurs.

e If Tis an interface type:

— If sisnot a final class (§8.1.1), then, if there exists a supertype x of T, and
a supertype v of s, such that both x and v are provably distinct parameterized
types, and that the erasures of x and v are the same, a compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if s does not
implement T, a subclass of s might).

— If sisa final class (§8.1.1), then s must implement T, or a compile-time error
occurs.

e If Tis a type variable, then this algorithm is applied recursively, using the upper
bound of Tin place of T.

e If 7is an array type, then s must be the class object, or a compile-time error
occurs.

e If 7is an intersection type, T; & ... & Ty, then it is a compile-time error if there
exists a T; (1 =i < n) such that s cannot be cast to T; by this algorithm. That is,
the success of the cast is determined by the most restrictive component of the
intersection type.

If s is an interface type:

e If 7 is an array type, then s must be the type java.io.Serializable or
Cloneable (the only interfaces implemented by arrays), or a compile-time error
occurs.

e If Tis a class or interface type that is not final (§8.1.1), then if there exists a
supertype x of T, and a supertype v of s, such that both x and v are provably
distinct parameterized types, and that the erasures of x and v are the same, a
compile-time error occurs.

Otherwise, the cast is always legal at compile time (because even if T does not
implement s, a subclass of T might).

e If ris aclass type that is £inal, then:

— If 51is not a parameterized type or a raw type, then T must implement s, or a
compile-time error occurs.
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— Otherwise, s is either a parameterized type that is an invocation of some
generic type declaration G, or a raw type corresponding to a generic type
declaration 6. Then there must exist a supertype x of T, such that x is an
invocation of G, or a compile-time error occurs.

Furthermore, if s and x are provably distinct parameterized types then a
compile-time error occurs.

If Tis a type variable, then this algorithm is applied recursively, using the upper
bound of Tin place of T.

If T is an intersection type, T; & ... & Ty, then it is a compile-time error if there
exists a T; (1 =i =< n) such that s cannot be cast to T; by this algorithm.

If s is a type variable, then this algorithm is applied recursively, using the upper
bound of s in place of s.

If sis an intersection type A4; & ... & A,, then it is a compile-time error if there exists
an A; (1 =i =n)such that a; cannot be cast to T by this algorithm. That is, the success
of the cast is determined by the most restrictive component of the intersection type.

If sis an array type sc[ 1, that is, an array of components of type sc:

If 7is a class type, then if T is not object, then a compile-time error occurs
(because object is the only class type to which arrays can be assigned).

If Tis an interface type, then a compile-time error occurs unless T is the type
java.io.Serializable or the type Cloneable (the only interfaces implemented
by arrays).

If T is a type variable, then this algorithm is applied recursively, using the upper
bound of T in place of 7.

If 7 is an array type TC[ 1, that is, an array of components of type Tc, then a
compile-time error occurs unless one of the following is true:

— rc and sc are the same primitive type.
— rcand scare reference types and type sc can undergo casting conversion to Tc.
If T is an intersection type, T; & ... & Tp, then it is a compile-time error if there
exists a T; (1 =i =< n) such that s cannot be cast to T; by this algorithm.
Example 5.5.1-1. Casting Conversion for Reference Types
class Point { int x, y; }
interface Colorable { void setColor(int color); }

class ColoredPoint extends Point implements Colorable {
int color;
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public void setColor(int color) { this.color = color; }

}

final class EndPoint extends Point {}

class Test {
public static void main(String[] args) {

Point p = new Point();

ColoredPoint cp = new ColoredPoint();

Colorable c;

// The following may cause errors at run time because

// we cannot be sure they will succeed; this possibility

// is suggested by the casts:

cp = (ColoredPoint)p; // p might not reference an
// object which is a ColoredPoint
// or a subclass of ColoredPoint

c = (Colorable)p; // p might not be Colorable

// The following are incorrect at compile time because

// they can never succeed as explained in the text:

Long 1 = (Long)p; // compile-time error #1
EndPoint e = new EndPoint();
c = (Colorable)e; // compile-time error #2

Here, the first compile-time error occurs because the class types Long and Point are
unrelated (that is, they are not the same, and neither is a subclass of the other), so a cast
between them will always fail.

The second compile-time error occurs because a variable of type EndPoint can never
reference a value that implements the interface Colorable. This is because EndPoint is
a final type, and a variable of a final type always holds a value of the same run-time
type as its compile-time type. Therefore, the run-time type of variable e must be exactly
the type EndPoint, and type EndPoint does not implement Colorable.

Example 5.5.1-2. Casting Conversion for Array Types

class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = y; }
public String toString() { return "("+x+","+y+")"; }
}
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
int color;
ColoredPoint(int x, int y, int color) {
super(x, y); setColor(color);
}
public void setColor(int color) { this.color = color; }
public String toString() {
return super.toString() + "@" + color;
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class Test {

public static void main(String[] args) {
Point[] pa = new ColoredPoint[4];
pa[0] = new ColoredPoint(2, 2, 12);
pa[l] = new ColoredPoint(4, 5, 24);
ColoredPoint[] cpa = (ColoredPoint[])pa;
System.out.print("cpa: {");
for (int i = 0; i < cpa.length; i++)

System.out.print((i == 02 " " : ", ") + cpal[i]);
System.out.println(" }");

}
This program compiles without errors and produces the output:

cpa: { (2,2)@12, (4,5)@24, null, null }

5.5.2 Checked Casts and Unchecked Casts

A cast from a type s to a type T is statically known to be correct if and only if s
<: 7(§4.10).

A cast from a type s to a parameterized type (§4.5) T is unchecked unless at least
one of the following is true:

¢ S<:T
* All of the type arguments (§4.5.1) of T are unbounded wildcards

* T<: sand s has no subtype x other than T where the type arguments of x are not
contained in the type arguments of T.

A cast from a type s to a type variable 7 is unchecked unless s <: T.

A cast from a type s to an intersection type T; & ... & T, is unchecked if there exists
a 7; (1 =i =< n) such that a cast from s to r; is unchecked.

An unchecked cast from s to a non-intersection type T is completely unchecked if
the cast from Isl to |7l is statically known to be correct. Otherwise, it is partially
unchecked.

An unchecked cast from s to an intersection type T; & ... & T, iS completely
unchecked if, for all i (1 =i < n), a cast from s to T; is either statically known to be
correct or completely unchecked. Otherwise, it is partially unchecked.

An unchecked cast causes a compile-time unchecked warning, unless suppressed
by the suppresswarnings annotation (§9.6.4.5).

A cast is checked if it is not statically known to be correct and it is not unchecked.
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If a cast to a reference type is not a compile-time error, there are several cases:

The cast is statically known to be correct.

No run-time action is performed for such a cast.

The cast is a completely unchecked cast.

No run-time action is performed for such a cast.

The cast is a partially unchecked or checked cast to an intersection type.

Where the intersection type iS T; & ... & T,, then for all i (1 =i < n), any run-
time check required for a cast from s to T; is also required for the cast to the
intersection type.

The cast is a partially unchecked cast to a non-intersection type.

Such a cast requires a run-time validity check. The check is performed as if the
cast had been a checked cast between |sl and |71, as described below.

The cast is a checked cast to a non-intersection type.

Such a cast requires a run-time validity check. If the value at run time is null,
then the cast is allowed. Otherwise, let r be the class of the object referred to by
the run-time reference value, and let T be the erasure (§4.6) of the type named in
the cast operator. A cast conversion must check, at run time, that the class r is
assignment compatible with the type T, via the algorithm in §5.5.3.

Note that r cannot be an interface when these rules are first applied for any given
cast, but r may be an interface if the rules are applied recursively because the
run-time reference value may refer to an array whose element type is an interface

type.

5.5.3 Checked Casts at Run Time

Here is the algorithm to check whether the run-time type R of an object is
assignment compatible with the type T which is the erasure (§4.6) of the type named
in the cast operator. If a run-time exception is thrown, it is a ClassCastException.

If ris an ordinary class (not an array class):

If ris a class type, then R must be either the same class (§4.3.4) as Tor a subclass
of T, or a run-time exception is thrown.

If 7is an interface type, then R must implement (§8.1.5) interface T, or a run-
time exception is thrown.

If T is an array type, then a run-time exception is thrown.
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If r is an interface:

e If 7is a class type, then T must be object (§4.3.2), or a run-time exception is
thrown.

e If 7 is an interface type, then R must be either the same interface as 7 or a
subinterface of T, or a run-time exception is thrown.

e If 7is an array type, then a run-time exception is thrown.

If ris a class representing an array type RC| ], that is, an array of components of
type RC:

e If Tis a class type, then T must be object (§4.3.2), or a run-time exception is
thrown.

» If Tis an interface type, then a run-time exception is thrown unless T is the type
java.io.Serializable orthe type Cloneable (the only interfaces implemented
by arrays).

This case could slip past the compile-time checking if, for example, a reference to an
array were stored in a variable of type Object.

e If Tis an array type Tc| 1, that is, an array of components of type Tc, then a run-
time exception is thrown unless one of the following is true:

— rc and Rc are the same primitive type.

— rc and Rc are reference types and type Rc can be cast to TC by a recursive
application of these run-time rules for casting.

Example 5.5.3-1. Incompatible Types at Run Time

class Point { int x, y; }
interface Colorable { void setColor(int color); }
class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }

}

class Test {
public static void main(String[] args) {
Point[] pa = new Point[100];

// The following line will throw a ClassCastException:
ColoredPoint[] cpa = (ColoredPoint[])pa;
System.out.println(cpal[0]);

int[] shortvec = new int[2];

Object o = shortvec;

// The following line will throw a ClassCastException:
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Colorable ¢ = (Colorable)o;
c.setColor(0);

}

This program uses casts to compile, but it throws exceptions at run time, because the types
are incompatible.

5.6 Numeric Contexts

Numeric contexts apply to the operands of an arithmetic operator.
Numeric contexts allow the use of:

* an identity conversion (§5.1.1)

* a widening primitive conversion (§5.1.2)

* an unboxing conversion (§5.1.8) optionally followed by a widening primitive
conversion

A numeric promotion is a process by which, given an arithmetic operator and its
argument expressions, the arguments are converted to an inferred target type 7. T
is chosen during promotion such that each argument expression can be converted
to 7 and the arithmetic operation is defined for values of type .

The two kinds of numeric promotion are unary numeric promotion (§5.6.1) and
binary numeric promotion (§5.6.2).

5.6.1 Unary Numeric Promotion

Some operators apply unary numeric promotion to a single operand, which must
produce a value of a numeric type:

* If the operand is of compile-time type Byte, Short, Character, Or Integer, it
is subjected to unboxing conversion (§5.1.8). The result is then promoted to a
value of type int by a widening primitive conversion (§5.1.2) or an identity
conversion (§5.1.1).

* Otherwise, if the operand is of compile-time type Long, Float, Or Double, it is
subjected to unboxing conversion (§5.1.8).

* Otherwise, if the operand is of compile-time type byte, short, or char, it is
promoted to a value of type int by a widening primitive conversion (§5.1.2).

* Otherwise, a unary numeric operand remains as is and is not converted.
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After the conversion(s), if any, value set conversion (§5.1.13) is then applied.
Unary numeric promotion is performed on expressions in the following situations:
* Each dimension expression in an array creation expression (§15.10.1)

* The index expression in an array access expression (§15.10.3)

* The operand of a unary plus operator + (§15.15.3)

* The operand of a unary minus operator - (§15.15.4)

* The operand of a bitwise complement operator ~ (§15.15.5)

* Each operand, separately, of a shift operator <<, >>, or >>> (§15.19).

A long shift distance (right operand) does not promote the value being shifted
(left operand) to long.

Example 5.6.1-1. Unary Numeric Promotion

class Test {
public static void main(String[] args) {

byte b = 2;
int a[] = new int[b]; // dimension expression promotion
char ¢ = '\u0001';
a[c] = 1; // index expression promotion
a[0] = -c; // unary - promotion
System.out.println("a: " + a[0] + "," + a[l]);
b =-1;
int i = ~b; // bitwise complement promotion
System.out.println("~0x" + Integer.toHexString(b)

+ "==0x" + Integer.toHexString(i));
i = b << 4L; // shift promotion (left operand)

System.out.println("0x" + Integer.toHexString(b)
+ "<<4L==0x" + Integer.toHexString(i));

}
This program produces the output:
a: -1,1
~Oxffffffff==0x0
Oxffffffff<<4L==0xfffffffo

5.6.2 Binary Numeric Promotion

When an operator applies binary numeric promotion to a pair of operands, each
of which must denote a value that is convertible to a numeric type, the following
rules apply, in order:
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1. If any operand is of a reference type, it is subjected to unboxing conversion
(8§5.1.8).

2. Widening primitive conversion (§5.1.2) is applied to convert either or both
operands as specified by the following rules:

* If either operand is of type double, the other is converted to double.

* Otherwise, if either operand is of type float, the other is converted to £1oat.
* Otherwise, if either operand is of type long, the other is converted to long.
* Otherwise, both operands are converted to type int.

After the conversion(s), if any, value set conversion (§5.1.13) is then applied to
each operand.

Binary numeric promotion is performed on the operands of certain operators:
* The multiplicative operators *, /, and % (§15.17)

* The addition and subtraction operators for numeric types + and - (§15.18.2)
* The numerical comparison operators <, <=, >, and >= (§15.20.1)

* The numerical equality operators == and t= (§15.21.1)

* The integer bitwise operators &, *, and | (§15.22.1)

* In certain cases, the conditional operator 2 : (§15.25)

Example 5.6.2-1. Binary Numeric Promotion

class Test {
public static void main(String[] args) {

int i = 0;
float £ = 1.0f;
double d = 2.0;

// First int*float is promoted to float*float, then
// float==double is promoted to double==double:
if (i * £ == d) System.out.println("oops");

// A charsbyte is promoted to inté&int:

byte b = 0x1f;

char ¢ = 'G';

int control = ¢ & b;
System.out.println(Integer.toHexString(control));

// Here int:float is promoted to float:float:
f = (b==0) 2 i : 4.0f;
System.out.println(1.0/f);
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This program produces the output:

7
0.25

The example converts the ASCII character G to the ASCII control-G (BEL), by masking off
all but the low 5 bits of the character. The 7 is the numeric value of this control character.
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Names

NAMES are used to refer to entities declared in a program.

A declared entity (§6.1) is a package, class type (normal or enum), interface
type (normal or annotation type), member (class, interface, field, or method) of
a reference type, type parameter (of a class, interface, method or constructor),
parameter (to a method, constructor, or exception handler), or local variable.

Names in programs are either simple, consisting of a single identifier, or qualified,
consisting of a sequence of identifiers separated by "." tokens (§6.2).

Every declaration that introduces a name has a scope (§6.3), which is the part of the
program text within which the declared entity can be referred to by a simple name.

A qualified name ~N.x may be used to refer to a member of a package or reference
type, where n is a simple or qualified name and x is an identifier. If ¥ names a
package, then x is a member of that package, which is either a class or interface
type or a subpackage. If ¥ names a reference type or a variable of a reference type,
then x names a member of that type, which is either a class, an interface, a field,
or a method.

In determining the meaning of a name (§6.5), the context of the occurrence is used
to disambiguate among packages, types, variables, and methods with the same
name.

Access control (§6.6) can be specified in a class, interface, method, or field
declaration to control when access to a member is allowed. Access is a different
concept from scope. Access specifies the part of the program text within which the
declared entity can be referred to by a qualified name. Access to a declared entity is
also relevant in a field access expression (§15.11), a method invocation expression
in which the method is not specified by a simple name (§15.12), a method reference
expression (§15.13), or a qualified class instance creation expression (§15.9). In
the absence of an access modifier, most declarations have package access, allowing
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access anywhere within the package that contains its declaration; other possibilities
are public, protected, and private.

Fully qualified and canonical names (§6.7) are also discussed in this chapter.

6.1 Declarations

A declaration introduces an entity into a program and includes an identifier (§3.8)
that can be used in a name to refer to this entity.

A declared entity is one of the following:

A package, declared in a package declaration (§7.4)

An imported type, declared in a single-type-import declaration or a type-import-
on-demand declaration (§7.5.1, §7.5.2)

An imported static member, declared in a single-static-import declaration or a
static-import-on-demand declaration (§7.5.3, §7.5.4)

A class, declared in a class type declaration (§8.1)
An interface, declared in an interface type declaration (§9.1)

A type parameter, declared as part of the declaration of a generic class, interface,
method, or constructor (§8.1.2, §9.1.2,8§8.4.4,§8.84)

A member of a reference type (§8.2, §9.2, §8.9.3, §9.6, §10.7), one of the
following:

— A member class (§8.5, §9.5)
— A member interface (§8.5, §9.5)
— An enum constant (§8.9)
— A field, one of the following:
> A field declared in a class type or enum type (§8.3, §8.9.2)
> A field declared in an interface type or annotation type (§9.3, §9.6.1)
> The field 1ength, which is implicitly a member of every array type (§10.7)
— A method, one of the following:

> A method (abstract or otherwise) declared in a class type or enum type
(§8.4,889.2)
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> A method (always abstract) declared in an interface type or annotation
type (§9.4,§9.6.1)

* A parameter, one of the following:

— A formal parameter of a method or constructor of a class type or enum type
(§8.4.1, §8.8.1, §8.9.2), or of a lambda expression (§15.27.1)

— A formal parameter of an abstract method of an interface type or annotation
type (§9.4, §9.6.1)

— An exception parameter of an exception handler declared in a catch clause of
a try statement (§14.20)

* A local variable, one of the following:
— A local variable declared in a block (§14.4)
— A local variable declared in a for statement (§14.14)

Constructors (§8.8) are also introduced by declarations, but use the name of the
class in which they are declared rather than introducing a new name.

The declaration of a type which is not generic (class ¢ ...) declares one
entity: a non-generic type (C). A non-generic type is not a raw type, despite the
syntactic similarity. In contrast, the declaration of a generic type (class C<T> ...
or interface c<T> ...) declares two entities: a generic type (c<T>) and a
corresponding non-generic type (c). In this case, the meaning of the term ¢ depends
on the context where it appears:

e If genericity is unimportant, as in the non-generic contexts identified below, the
identifier ¢ denotes the non-generic type c.

 If genericity is important, as in all contexts from §6.5 except the non-generic
contexts, the identifier ¢ denotes either:

— The raw type ¢ which is the erasure (§4.6) of the generic type c<T>; or

— A parameterized type which is a particular parameterization (§4.5) of the
generic type C<T>.

The 13 non-generic contexts are as follows:

1. In asingle-type-import declaration (§7.5.1)

2. To the left of the . in a single-static-import declaration (§7.5.3)

3. To the left of the . in a static-import-on-demand declaration (§7.5.4)
4

To the left of the ( in a constructor declaration (§8.8)

6.1
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After the @ sign in an annotation (§9.7)
To the left of .class in a class literal (§15.8.2)

To the left of .this in a qualified this expression (§15.8.4)

00 9 AN W

To the left of .super in a qualified superclass field access expression
(§15.11.2)

9. To the left of . Identifier or .super.lIdentifier in a qualified method invocation
expression (§15.12)

10. To the left of . super: : in a method reference expression (§15.13)
11. In a qualified expression name in a postfix expression (§15.14.1)
12. In a throws clause of a method or constructor (§8.4.6, §8.8.5, §9.4)
13. In an exception parameter declaration (§14.20)

The first ten non-generic contexts correspond to the first ten syntactic contexts for
a TypeName in §6.5.1. The eleventh non-generic context is a postfix expression,
where a qualified ExpressionName such as c.x may include a TypeName c to
denote static member access. The common use of TypeName is significant: it
indicates that these contexts involve a less-than-first-class use of a type. In contrast,
the twelfth and thirteenth non-generic contexts employ ClassType, indicating that
throws and catch clauses use types in a first-class way, in line with, say, field
declarations. The characterization of these two contexts as non-generic is due to
the fact that an exception type cannot be parameterized.

Note that the ClassType production allows annotations, so it is possible to annotate the
use of a type in a throws or catch clause, whereas the TypeName production disallows
annotations, so it is not possible to annotate the name of a type in, say, a single-type-import
declaration.

Naming Conventions

The class libraries of the Java SE platform attempt to use, whenever possible, names chosen
according to the conventions presented below. These conventions help to make code more
readable and avoid certain kinds of name conflicts.

We recommend these conventions for use in all programs written in the Java programming
language. However, these conventions should not be followed slavishly if long-held
conventional usage dictates otherwise. So, for example, the sin and cos methods of
the class java.lang.Math have mathematically conventional names, even though these
method names flout the convention suggested here because they are short and are not verbs.

Package Names
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Developers should take steps to avoid the possibility of two published packages having the
same name by choosing unique package names for packages that are widely distributed.
This allows packages to be easily and automatically installed and catalogued. This
section specifies a suggested convention for generating such unique package names.
Implementations of the Java SE platform are encouraged to provide automatic support for
converting a set of packages from local and casual package names to the unique name
format described here.

If unique package names are not used, then package name conflicts may arise far from the
point of creation of either of the conflicting packages. This may create a situation that is
difficult or impossible for the user or programmer to resolve. The class ClassLoader can
be used to isolate packages with the same name from each other in those cases where the
packages will have constrained interactions, but not in a way that is transparent to a naive
program.

You form a unique package name by first having (or belonging to an organization that has)
an Internet domain name, such as oracle.com. You then reverse this name, component
by component, to obtain, in this example, com.oracle, and use this as a prefix for
your package names, using a convention developed within your organization to further
administer package names. Such a convention might specify that certain package name
components be division, department, project, machine, or login names.

Example 6.1-1. Unique Package Names

com.nighthacks.java.jag.scrabble
org.openjdk.tools.compiler
net.jcip.annotations
edu.cmu.cs.bovik.cheese
gov.whitehouse.socks.mousefinder

The first component of a unique package name is always written in all-lowercase ASCII
letters and should be one of the top level domain names, such as com, edu, gov, mil, net,
or org, or one of the English two-letter codes identifying countries as specified in I1SO
Standard 3166.

The name of a package is not meant to imply where the package is stored on the Internet. The
suggested convention for generating unique package names is merely a way to piggyback
a package naming convention on top of an existing, widely known unique name registry
instead of having to create a separate registry for package names.

For example, a package named edu.cmu.cs.bovik.cheese is not necessarily obtainable
from Internet address cmu.edu or cs.cmu.edu or bovik.cs.cmu.edu.

In some cases, the Internet domain name may not be a valid package name. Here are some
suggested conventions for dealing with these situations:

 If the domain name contains a hyphen, or any other special character not allowed in an
identifier (§3.8), convert it into an underscore.

e If any of the resulting package name components are keywords (§3.9), append an
underscore to them.
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 If any of the resulting package name components start with a digit, or any other character
that is not allowed as an initial character of an identifier, have an underscore prefixed
to the component.

Names of packages intended only for local use should have a first identifier that begins with
a lowercase letter, but that first identifier specifically should not be the identifier java;
package names that start with the identifier java are reserved for packages of the Java SE
platform.

Class and Interface Type Names

Names of class types should be descriptive nouns or noun phrases, not overly long, in mixed
case with the first letter of each word capitalized.

Example 6.1-2. Descriptive Class Names

ClassLoader
SecurityManager
Thread

Dictionary
BufferedInputStream

Likewise, names of interface types should be short and descriptive, not overly long, in
mixed case with the first letter of each word capitalized. The name may be a descriptive
noun or noun phrase, which is appropriate when an interface is used as if it were an abstract
superclass, such as interfaces java.io.DataInput and java.io.DataOutput;orit may
be an adjective describing a behavior, as for the interfaces Runnable and Cloneable.

Type Variable Names

Type variable names should be pithy (single character if possible) yet evocative, and should
not include lower case letters. This makes it easy to distinguish type parameters from
ordinary classes and interfaces.

Container types should use the name E for their element type. Maps should use X for the
type of their keys and v for the type of their values. The name X should be used for arbitrary
exception types. We use T for type, whenever there is not anything more specific about the
type to distinguish it. (This is often the case in generic methods.)

If there are multiple type parameters that denote arbitrary types, one should use letters
that neighbor T in the alphabet, such as S. Alternately, it is acceptable to use numeric
subscripts (e.g., T1, T2) to distinguish among the different type variables. In such cases, all
the variables with the same prefix should be subscripted.

If a generic method appears inside a generic class, it is a good idea to avoid using the
same names for the type parameters of the method and class, to avoid confusion. The same
applies to nested generic classes.

Example 6.1-3. Conventional Type Variable Names

public class HashSet<E> extends AbstractSet<E> { ... }
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public class HashMap<K,V> extends AbstractMap<K,V> { ... }
public class ThreadLocal<T> { ... }
public interface Functor<T, X extends Throwable> {

T eval() throws X;

When type parameters do not fall conveniently into one of the categories mentioned, names
should be chosen to be as meaningful as possible within the confines of a single letter. The
names mentioned above (E, K, V, X, T) should not be used for type parameters that do not
fall into the designated categories.

Method Names

Method names should be verbs or verb phrases, in mixed case, with the first letter lowercase
and the first letter of any subsequent words capitalized. Here are some additional specific
conventions for method names:

* Methods to get and set an attribute that might be thought of as a variable V should be
named getV and setV. An example is the methods getPriority and setPriority
of class Thread.

* A method that returns the length of something should be named length, as in class
String.

* A method that tests a boolean condition V about an object should be named isv. An
example is the method isInterrupted of class Thread.

* A method that converts its object to a particular format F should be named
toF. Examples are the method toString of class Object and the methods
toLocaleString and toGMTString of class java.util.Date.

Whenever possible and appropriate, basing the names of methods in a new class on names
in an existing class that is similar, especially a class from the Java SE platform API, will
make it easier to use.

Field Names

Names of fields that are not £inal should be in mixed case with a lowercase first letter
and the first letters of subsequent words capitalized. Note that well-designed classes have

very few public or protected fields, except for fields that are constants (static final
fields).

Fields should have names that are nouns, noun phrases, or abbreviations for nouns.

Examples of this convention are the fields buf, pos, and count of the class
java.io.ByteArrayInputStream and the field bytesTransferred of the class
java.io.InterruptedIOException.

Constant Names

The names of constants in interface types should be, and £inal variables of class types
may conventionally be, a sequence of one or more words, acronyms, or abbreviations,
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all uppercase, with components separated by underscore " " characters. Constant names
should be descriptive and not unnecessarily abbreviated. Conventionally they may be any
appropriate part of speech.

Examples of names for constants include MIN_VALUE, MAX_VALUE, MIN_RADIX, and
MAX_RADIX of the class Character.

A group of constants that represent alternative values of a set, or, less frequently, masking
bits in an integer value, are sometimes usefully specified with a common acronym as a
name prefix.

For example:

interface ProcessStates {
int PS_RUNNING =0
int PS_SUSPENDED = 1

’
’

Local Variable and Parameter Names

Local variable and parameter names should be short, yet meaningful. They are often short
sequences of lowercase letters that are not words, such as:

* Acronyms, that is the first letter of a series of words, as in cp for a variable holding a
reference to a ColoredPoint
* Abbreviations, as in buf holding a pointer to a buffer of some kind

e Mnemonic terms, organized in some way to aid memory and understanding, typically
by using a set of local variables with conventional names patterned after the names of
parameters to widely used classes. For example:

— in and out, whenever some kind of input and output are involved, patterned
after the fields of System

— off and len, whenever an offset and length are involved, patterned after the
parameters to the read and write methods of the interfaces DataInput and
DataOutput of java.io

One-character local variable or parameter names should be avoided, except for temporary
and looping variables, or where a variable holds an undistinguished value of a type.
Conventional one-character names are:

e bforabyte

e cforachar

e dforadouble

* e foran Exception

e fforafloat

e i,j,and k for ints

NAMES
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e 1foralong

e o foranObject

e sforastring

* v for an arbitrary value of some type

Local variable or parameter names that consist of only two or three lowercase letters should

not conflict with the initial country codes and domain names that are the first component
of unique package names.

6.2 Names and Identifiers

A name is used to refer to an entity declared in a program.

There are two forms of names: simple names and qualified names.
A simple name is a single identifier.

A qualified name consists of a name, a "." token, and an identifier.

In determining the meaning of a name (§6.5), the context in which the name appears
is taken into account. The rules of §6.5 distinguish among contexts where a name
must denote (refer to) a package (§6.5.3), a type (§6.5.5), a variable or value in an
expression (§6.5.6), or a method (§6.5.7).

Packages and reference types have members which may be accessed by qualified names.
As background for the discussion of qualified names and the determination of the meaning
of names, see the descriptions of membership in §4 .4, §4.5.2, §4.8,§4.9,§7.1, §8.2,§9.2,
and §10.7.

Not all identifiers in a program are a part of a name. Identifiers are also used in
the following situations:

* In declarations (§6.1), where an identifier may occur to specify the name by
which the declared entity will be known.

e As labels in labeled statements (§14.7) and in break and continue Statements
(§14.15, §14.16) that refer to statement labels.

The identifiers used in labeled statements and their associated break and
continue statements are completely separate from those used in declarations.

* In field access expressions (§15.11), where an identifier occurs aftera "." token
to indicate a member of the object denoted by the expression before the "." token,
or the object denoted by the super or TypeName . super before the "." token.

6.2
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In some method invocation expressions (§15.12), wherever an identifier occurs
after a "." token and before a " (" token to indicate a method to be invoked for
the object denoted by the expression before the "." token, or the type denoted
by the TypeName before the "." token, or the object denoted by the super or
TypeName . super before the "." token.

In some method reference expressions (§15.13), wherever an identifier occurs
after a ": :" token to indicate a method of the object denoted by the expression
before the "::" token, or the type denoted by the TypeName before the "::"

n n

token, or the object denoted by the super or TypeName.super before the ": :
token.

In qualified class instance creation expressions (§15.9), where an identifier
occurs to the right of the new token to indicate a type that is a member of the
compile-time type of the expression preceding the new token.

In element-value pairs of annotations (§9.7.1), to denote an element of the
corresponding annotation type.

In this program:

class Test {
public static void main(String[] args) {
Class c = System.out.getClass();
System.out.println(c.toString().length() +
args[0].length() + args.length);

the identifiers Test, main, and the first occurrences of args and c are not names. Rather,
they are identifiers used in declarations to specify the names of the declared entities. The
names String, Class, System.out.getClass, System.out.println, c.toString,
args, and args. length appear in the example.

The occurrence of length in args.length is a name because args . length is a qualified
name (§6.5.6.2) and not a field access expression (§15.11). A field access expression, as
well as a method invocation expression, a method reference expression, and a qualified class
instance creation expression, uses an identifier rather than a name to denote the member of
interest. Thus, the occurrence of length in args[0].length() is not a name, but rather
an identifier appearing in a method invocation expression.

One might wonder why these kinds of expression use an identifier rather than a simple
name, which is after all just an identifier. The reason is that a simple expression name is
defined in terms of the lexical environment; that is, a simple expression name must be in the
scope of a variable declaration (§6.5.6.1). On the other hand, field access, qualified method
invocation, method references, and qualified class instance creation all refer to members
whose names are not in the lexical environment. By definition, such names are bound only
in the context provided by the Primary of the field access expression, method invocation
expression, method reference expression, or class instance creation expression; or by the
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super of the field access expression, method invocation expression, or method reference
expression; and so on. Thus, we denote such members with identifiers rather than simple
names.

To complicate things further, a field access expression is not the only way to denote a
field of an object. For parsing reasons, a qualified name is used to denote a field of an in-
scope variable. (The variable itself is denoted with a simple name, alluded to above.) It is
necessary for access control (§6.6) to apply to both denotations of a field.

6.3 Scope of a Declaration

The scope of a declaration is the region of the program within which the entity
declared by the declaration can be referred to using a simple name, provided it is
visible (§6.4.1).

A declaration is said to be in scope at a particular point in a program if and only
if the declaration's scope includes that point.

The scope of the declaration of an observable (§7.4.3) top level package is all
observable compilation units (§7.3).

The declaration of a package that is not observable is never in scope.
The declaration of a subpackage is never in scope.
The package java is always in scope.

The scope of a type imported by a single-type-import declaration (§7.5.1) or
a type-import-on-demand declaration (§7.5.2) is all the class and interface type
declarations (§7.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a member imported by a single-static-import declaration (§7.5.3) or
a static-import-on-demand declaration (§7.5.4) is all the class and interface type
declarations (§7.6) in the compilation unit in which the import declaration appears,
as well as any annotations on the package declaration (if any) of the compilation
unit .

The scope of a top level type (§7.6) is all type declarations in the package in which
the top level type is declared.

The scope of a declaration of a member m declared in or inherited by a class type ¢
(§8.1.6) is the entire body of ¢, including any nested type declarations.

6.3
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The scope of a declaration of a member m declared in or inherited by an interface
type 1 (§9.1.4) is the entire body of 1, including any nested type declarations.

The scope of an enum constant ¢ declared in an enum type T is the body of T, and
any case label of a switch statement whose expression is of enum type 7(§14.11).

The scope of a formal parameter of a method (§8.4.1), constructor (§8.8.1), or
lambda expression (§15.27) is the entire body of the method, constructor, or lambda
expression.

The scope of a class's type parameter (§8.1.2) is the type parameter section of the
class declaration, the type parameter section of any superclass or superinterface of
the class declaration, and the class body.

The scope of an interface's type parameter (§9.1.2) is the type parameter section
of the interface declaration, the type parameter section of any superinterface of the
interface declaration, and the interface body.

The scope of a method's type parameter (§8.4.4) is the entire declaration of the
method, including the type parameter section, but excluding the method modifiers.

The scope of a constructor's type parameter (§8.8.4) is the entire declaration of
the constructor, including the type parameter section, but excluding the constructor
modifiers.

The scope of a local class declaration immediately enclosed by a block (§14.2) is
the rest of the immediately enclosing block, including its own class declaration.

The scope of a local class declaration immediately enclosed by a switch block
statement group (§14.11) is the rest of the immediately enclosing switch block
statement group, including its own class declaration.

The scope of a local variable declaration in a block (§14.4) is the rest of the block
in which the declaration appears, starting with its own initializer and including any
further declarators to the right in the local variable declaration statement.

The scope of a local variable declared in the Forlnit part of a basic for statement
(§14.14.1) includes all of the following:

e Its own initializer

* Any further declarators to the right in the Forlnit part of the for statement
* The Expression and ForUpdate parts of the for statement

* The contained Statement

The scope of a local variable declared in the FormalParameter part of an enhanced
for statement (§14.14.2) is the contained Statement.
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The scope of a parameter of an exception handler that is declared in a catch clause
of a try statement (§14.20) is the entire block associated with the catch.

The scope of a variable declared in the ResourceSpecification of a try-with-
resources statement (§14.20.3) is from the declaration rightward over the remainder
of the ResourceSpecification and the entire try block associated with the try-with-
resources statement.

The translation of a try-with-resources statement implies the rule above.
Example 6.3-1. Scope of Type Declarations

These rules imply that declarations of class and interface types need not appear before uses
of the types. In the following program, the use of PointList in class Point is valid,
because the scope of the class declaration PointList includes both class Point and class
PointList, as well as any other type declarations in other compilation units of package
points.

package points;
class Point {
int x, y;
PointList list;
Point next;

}

class PointList {
Point first;

}

Example 6.3-2. Scope of Local Variable Declarations

The following program causes a compile-time error because the initialization of local
variable x is within the scope of the declaration of local variable x, but the local variable
x does not yet have a value and cannot be used. The field x has a value of 0 (assigned
when Test1 was initialized) but is a red herring since it is shadowed (§6.4.1) by the local
variable x.

class Testl {
static int x;
public static void main(String[] args) {
int x = x;
}
}

The following program does compile:

class Test2 {
static int x;
public static void main(String[] args) {
int x = (x=2)*2;

6.3
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System.out.println(x);
}

because the local variable x is definitely assigned (§16 (Definite Assignment)) before it is
used. It prints:

4

In the following program, the initializer for three can correctly refer to the variable two
declared in an earlier declarator, and the method invocation in the next line can correctly
refer to the variable three declared earlier in the block.

class Test3 {
public static void main(String[] args) {
System.out.print("2+1=");
int two = 2, three = two + 1;
System.out.println(three);

}
This program produces the output:

2+1=3

6.4 Shadowing and Obscuring

A local variable (§14 4), formal parameter (§8.4.1, §15.27.1), exception parameter
(§14.20), and local class (§14.3) can only be referred to using a simple name, not
a qualified name (§6.2).

Some declarations are not permitted within the scope of a local variable, formal
parameter, exception parameter, or local class declaration because it would be
impossible to distinguish between the declared entities using only simple names.

For example, if the name of a formal parameter of a method could be redeclared as the name
of a local variable in the method body, then the local variable would shadow the formal
parameter and the formal parameter would no longer be visible - an undesirable outcome.

It is a compile-time error if the name of a formal parameter is used to declare a new
variable within the body of the method, constructor, or lambda expression, unless
the new variable is declared within a class declaration contained by the method,
constructor, or lambda expression.
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It is a compile-time error if the name of a local variable v is used to declare a new
variable within the scope of v, unless the new variable is declared within a class
whose declaration is within the scope of v.

It is a compile-time error if the name of an exception parameter is used to declare
a new variable within the Block of the catch clause, unless the new variable is
declared within a class declaration contained by the Block of the catch clause.

It is a compile-time error if the name of a local class cis used to declare a new local
class within the scope of ¢, unless the new local class is declared within another
class whose declaration is within the scope of c.

These rules allow redeclaration of a variable or local class in nested class declarations (local
classes (§14.3) and anonymous classes (§15.9)) that occur in the scope of the variable or
local class. Thus, the declaration of a formal parameter, local variable, or local class may be
shadowed in a class declaration nested within a method, constructor, or lambda expression;
and the declaration of an exception parameter may be shadowed inside a class declaration
nested within the Block of the catch clause.

There are two design alternatives for handling name clashes created by lambda parameters
and other variables declared in lambda expressions. One is to mimic class declarations: like
local classes, lambda expressions introduce a new "level" for names, and all variable names
outside the expression can be redeclared. Another is a "local" strategy: like catch clauses,
for loops, and blocks, lambda expressions operate at the same "level" as the enclosing
context, and local variables outside the expression cannot be shadowed. The above rules
use the local strategy; there is no special dispensation that allows a variable declared in a
lambda expression to shadow a variable declared in an enclosing method.

Note that the rule for local classes does not make an exception for a class of the same name
declared within the local class itself. However, this case is prohibited by a separate rule: a
class cannot have the same name as a class that encloses it (§8.1).

Example 6.4-1. Attempted Shadowing Of A Local Variable

Because a declaration of an identifier as a local variable of a method, constructor, or
initializer block must not appear within the scope of a parameter or local variable of the
same name, a compile-time error occurs for the following program:

class Testl {
public static void main(String[] args) {
int 1i;
for (int i = 0; i < 10; i++)
System.out.println(i);

This restriction helps to detect some otherwise very obscure bugs. A similar restriction on
shadowing of members by local variables was judged impractical, because the addition of
a member in a superclass could cause subclasses to have to rename local variables. Related
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considerations make restrictions on shadowing of local variables by members of nested
classes, or on shadowing of local variables by local variables declared within nested classes
unattractive as well.

Hence, the following program compiles without error:

class Test2 {
public static void main(String[] args) {

int i;
class Local {
{
for (int i = 0; i < 10; i++)
System.out.println(i);
}
}

new Local();
}

On the other hand, local variables with the same name may be declared in two separate
blocks or for statements, neither of which contains the other:

class Test3 {
public static void main(String[] args) {
for (int i = 0; i < 10; i++)

System.out.print(i + " ");
for (int i = 10; i > 0; i--)
System.out.print(i + " ");

System.out.println();
}
This program compiles without error and, when executed, produces the output:

01234567189 109876054321

6.4.1 Shadowing

Some declarations may be shadowed in part of their scope by another declaration of
the same name, in which case a simple name cannot be used to refer to the declared
entity.

Shadowing is distinct from hiding (§8.3, §8.4.8.2, §8.5, §9.3, §9.5), which applies
only to members which would otherwise be inherited but are not because of a
declaration in a subclass. Shadowing is also distinct from obscuring (§6.4.2).

A declaration dis said to be visible at point p in a program if the scope of dincludes
p, and d is not shadowed by any other declaration at p.
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When the program point we are discussing is clear from context, we will often
simply say that a declaration is visible.

A declaration d of a type named n shadows the declarations of any other types
named n that are in scope at the point where d occurs throughout the scope of d.

A declaration d of a field or formal parameter named n shadows, throughout the
scope of d, the declarations of any other variables named n that are in scope at the
point where d occurs.

A declaration d of a local variable or exception parameter named n shadows,
throughout the scope of d, (a) the declarations of any other fields named n that are
in scope at the point where d occurs, and (b) the declarations of any other variables
named n that are in scope at the point where d occurs but are not declared in the
innermost class in which d is declared.

A declaration d of a method named n shadows the declarations of any other methods
named n that are in an enclosing scope at the point where d occurs throughout the
scope of d.

A package declaration never shadows any other declaration.

A type-import-on-demand declaration never causes any other declaration to be
shadowed.

A static-import-on-demand declaration never causes any other declaration to be
shadowed.

A single-type-import declaration d in a compilation unit c of package p that imports
a type named n shadows, throughout ¢, the declarations of:

* any top level type named n declared in another compilation unit of p
* any type named n imported by a type-import-on-demand declaration in ¢
* any type named n imported by a static-import-on-demand declaration in ¢

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a field named n shadows the declaration of any static field named n
imported by a static-import-on-demand declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a method named n with signature s shadows the declaration of any
static method named n with signature s imported by a static-import-on-demand
declaration in ¢, throughout c.

A single-static-import declaration d in a compilation unit ¢ of package p that
imports a type named n shadows, throughout ¢, the declarations of:
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* any static type named n imported by a static-import-on-demand declaration in c;
* any top level type (§7.6) named n declared in another compilation unit (§7.3)
of p;

* any type named n imported by a type-import-on-demand declaration (§7.5.2) in
C.

Example 6.4.1-1. Shadowing of a Field Declaration by a Local Variable Declaration

class Test {
static int x = 1;
public static void main(String[] args) {
int x = 0;
System.out.print("x=" + x);
System.out.println(", Test.x=" + Test.x);

}

This program produces the output:
x=0, Test.x=1

This program declares:

e aclass Test

e aclass (static) variable x that is a member of the class Test

* aclass method main that is a member of the class Test

* aparameter args of the main method

¢ alocal variable x of the main method

Since the scope of a class variable includes the entire body of the class (§8.2), the class
variable x would normally be available throughout the entire body of the method main.

In this example, however, the class variable x is shadowed within the body of the method
main by the declaration of the local variable x.

A local variable has as its scope the rest of the block in which it is declared (§6.3); in
this case this is the rest of the body of the main method, namely its initializer "0" and the
invocations of System.out.print and System.out.println.

This means that:

* The expression x in the invocation of print refers to (denotes) the value of the local
variable x.

* The invocation of println uses a qualified name (§6.6) Test .x, which uses the class
type name Test to access the class variable x, because the declaration of Test.x is
shadowed at this point and cannot be referred to by its simple name.
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The keyword this can also be used to access a shadowed field x, using the form this.x.
Indeed, this idiom typically appears in constructors (§8.8):

class Pair {
Object first, second;
public Pair(Object first, Object second) {
this.first = first;
this.second = second;

}

Here, the constructor takes parameters having the same names as the fields to be initialized.
This is simpler than having to invent different names for the parameters and is not too
confusing in this stylized context. In general, however, it is considered poor style to have
local variables with the same names as fields.

Example 6.4.1-2. Shadowing of a Type Declaration by Another Type Declaration

import java.util.*;
class Vector {

int val[] = {1, 2 };
}

class Test {
public static void main(String[] args) {
Vector v = new Vector();
System.out.println(v.val[0]);

}
The program compiles and prints:

1

using the class Vector declared here in preference to the generic class
java.util.Vector (§8.1.2) that might be imported on demand.

6.4.2 Obscuring

A simple name may occur in contexts where it may potentially be interpreted as
the name of a variable, a type, or a package. In these situations, the rules of §6.5
specify that a variable will be chosen in preference to a type, and that a type will
be chosen in preference to a package. Thus, it is may sometimes be impossible to
refer to a visible type or package declaration via its simple name. We say that such
a declaration is obscured.

Obscuring is distinct from shadowing (§6.4.1) and hiding (§8.3, §8.4.8.2, §8.5,
§9.3,§9.5).
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6.5

The meaning of a name depends on the context in which it is used. The

The naming conventions of §6.1 help reduce obscuring, but if it does occur, here are some
notes about what you can do to avoid it.

When package names occur in expressions:

» If a package name is obscured by a field declaration, then import declarations (§7.5)
can usually be used to make available the type names declared in that package.

 If a package name is obscured by a declaration of a parameter or local variable, then the

name of the parameter or local variable can be changed without affecting other code.

The first component of a package name is normally not easily mistaken for a type name, as a
type name normally begins with a single uppercase letter. (The Java programming language
does not actually rely on case distinctions to determine whether a name is a package name
or a type name.)

Obscuring involving class and interface type names is rare. Names of fields, parameters,
and local variables normally do not obscure type names because they conventionally begin
with a lowercase letter whereas type names conventionally begin with an uppercase letter.

Method names cannot obscure or be obscured by other names (§6.5.7).
Obscuring involving field names is rare; however:
 If afield name obscures a package name, then an import declaration (§7.5) can usually

be used to make available the type names declared in that package.

» Ifafield name obscures a type name, then a fully qualified name for the type can be used
unless the type name denotes a local class (§14.3).

* Field names cannot obscure method names.
¢ If a field name is shadowed by a declaration of a parameter or local variable, then the
name of the parameter or local variable can be changed without affecting other code.

Obscuring involving constant names is rare:

¢ Constant names normally have no lowercase letters, so they will not normally obscure
names of packages or types, nor will they normally shadow fields, whose names typically
contain at least one lowercase letter.

e Constant names cannot obscure method names, because they are distinguished
syntactically.

Determining the Meaning of a Name

determination of the meaning of a name requires three steps:
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* First, context causes a name syntactically to fall into one of
six categories: PackageName, TypeName, ExpressionName, MethodName,
PackageOrTypeName, or AmbiguousName.

* Second, a name that is initially classified by its context as an AmbiguousName or
as a PackageOrTypeName is then reclassified to be a PackageName, TypeName,
or ExpressionName.

* Third, the resulting category then dictates the final determination of the meaning
of the name (or a compile-time error if the name has no meaning).

PackageName:
Identifier
PackageName . Identifier

TypeName:
Identifier
PackageOrTypeName . Identifier

PackageOrTypeName:
Identifier
PackageOrTypeName . Identifier

ExpressionName:
Identifier
AmbiguousName . Identifier

MethodName:
Identifier

AmbiguousName:
Identifier
AmbiguousName . Identifier

The use of context helps to minimize name conflicts between entities of different
kinds. Such conflicts will be rare if the naming conventions described in §6.1 are
followed. Nevertheless, conflicts may arise unintentionally as types developed by different
programmers or different organizations evolve. For example, types, methods, and fields
may have the same name. It is always possible to distinguish between a method and a field
with the same name, since the context of a use always tells whether a method is intended.

6.5.1 Syntactic Classification of a Name According to Context

A name is syntactically classified as a TypeName in these contexts:

6.5

151



6.5

152

Determining the Meaning of a Name NAMES

* The first ten non-generic contexts (§6.1):

S A e e

In a single-type-import declaration (§7.5.1)

To the left of the . in a single-static-import declaration (§7.5.3)

To the left of the . in a static-import-on-demand declaration (§7.5.4)
To the left of the ( in a constructor declaration (§8.8)

After the @ sign in an annotation (§9.7)

To the left of .class in a class literal (§15.8.2)

To the left of .this in a qualified this expression (§15.8.4)

To the left of .super in a qualified superclass field access expression
(815.11.2)

To the left of .Identifier or .super.ldentifier in a qualified method
invocation expression (§15.12)

10. To the left of .super: : in a method reference expression (§15.13)

* Asthe Identifier or dotted Identifier sequence that constitutes any ReferenceType
(including a ReferenceType to the left of the brackets in an array type, or to
the left of the < in a parameterized type, or in a non-wildcard type argument
of a parameterized type, or in an extends or super clause of a wildcard type
argument of a parameterized type) in the 16 contexts where types are used

(§4.11):

1. In an extends or implements clause of a class declaration (§8.1.4, §8.1.5,
§8.5,89.5)

2. In an extends clause of an interface declaration (§9.1.3)

3. The return type of a method (§8.4, §9.4) (including the type of an element
of an annotation type (§9.6.1))

4. In the throws clause of a method or constructor (§8.4.6, §8.8.5, §9.4)

5. In an extends clause of a type parameter declaration of a generic class,
interface, method, or constructor (§8.1.2,§9.1.2,§8.4.4, §8.8.4)

6. The type in a field declaration of a class or interface (§8.3, §9.3)

7. The type in a formal parameter declaration of a method, constructor, or
lambda expression (§8.4.1, §8.8.1, §9.4, §15.27.1)

8. The type of the receiver parameter of a method (§8.4.1)
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10.
11.

12.

13.
14.
15.
16.

The type in a local variable declaration (§14.4,§14.14.1,§14.14.2,§14.20.3)
A type in an exception parameter declaration (§14.20)

In an explicit type argument list to an explicit constructor invocation
statement or class instance creation expression or method invocation
expression (§8.8.7.1,§15.9,§15.12)

In an unqualified class instance creation expression, either as the class type
to be instantiated (§15.9) or as the direct superclass or direct superinterface
of an anonymous class to be instantiated (§15.9.5)

The element type in an array creation expression (§15.10.1)
The type in the cast operator of a cast expression (§15.16)
The type that follows the instanceof relational operator (§15.20.2)

In a method reference expression (§15.13), as the reference type to search
for a member method or as the class type or array type to construct.

The extraction of a TypeName from the identifiers of a ReferenceType in the 16 contexts
above is intended to apply recursively to all sub-terms of the ReferenceType, such as its
element type and any type arguments.

For example, suppose a field declaration uses the type p.q.Foo[ ]. The brackets of the
array type are ignored, and the term p. q. Foo is extracted as a dotted sequence of Identifiers
to the left of the brackets in an array type, and classified as a TypeName. A later step
determines which of p, g, and Foo is a type name or a package name.

As another example, suppose a cast operator uses the type p.q.Foo<? extends String>.
The term p.q.Foo is again extracted as a dotted sequence of Identifier terms, this time
to the left of the < in a parameterized type, and classified as a TypeName. The term
String is extracted as an Identifier in an extends clause of a wildcard type argument of
a parameterized type, and classified as a TypeName.

A name is syntactically classified as an ExpressionName in these contexts:

* As the qualifying expression in a qualified superclass constructor invocation
(§8.8.7.1)

As the qualifying expression in a qualified class instance creation expression

(§15.9)

As the array reference expression in an array access expression (§15.10.3)
As a PostfixExpression (§15.14)
As the left-hand operand of an assignment operator (§15.26)
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A name is syntactically classified as a MethodName in this context:

» Before the " (" in a method invocation expression (§15.12)

A name is syntactically classified as a PackageOrTypeName in these contexts:
* To the left of the "." in a qualified TypeName

* In a type-import-on-demand declaration (§7.5.2)

A name is syntactically classified as an AmbiguousName in these contexts:

* To the left of the "." in a qualified ExpressionName

* To the left of the rightmost . that occurs before the "(" in a method invocation
expression

* To the left of the "." in a qualified AmbiguousName
* In the default value clause of an annotation type element declaration (§9.6.2)
* To the right of an "=" in an an element-value pair (§9.7.1)

* To the left of : : in a method reference expression (§15.13)

The effect of syntactic classification is to restrict certain kinds of entities to certain parts
of expressions:

* The name of afield, parameter, or local variable may be used as an expression (§15.14.1).

e The name of a method may appear in an expression only as part of a method invocation
expression (§15.12).

* The name of a class or interface type may appear in an expression only as part of a
class literal (§15.8.2), a qualified this expression (§15.8.4), a class instance creation
expression (§15.9), an array creation expression (§15.10.1), a cast expression (§15.16),
an instanceof expression (§15.20.2), an enum constant (§8.9), or as part of a qualified
name for a field or method.

* The name of a package may appear in an expression only as part of a qualified name
for a class or interface type.

6.5.2 Reclassification of Contextually Ambiguous Names

An AmbiguousName is then reclassified as follows.
If the AmbiguousName is a simple name, consisting of a single Identifier:

o If the Identifier appears within the scope (§6.3) of a local variable declaration
(§14.4) or parameter declaration (§8.4.1, §8.8.1, §14.20) or field declaration
(§8.3) with that name, then the AmbiguousName is reclassified as an
ExpressionName.
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* Otherwise, if a field of that name is declared in the compilation unit (§7.3)
containing the Identifier by a single-static-import declaration (§7.5.3), or by
a static-import-on-demand declaration (§7.5.4) then the AmbiguousName is
reclassified as an ExpressionName.

* Otherwise, if the Identifier appears within the scope (§6.3) of a top level
class (§8 (Classes)) or interface type declaration (§9 (Interfaces)), a local class
declaration (§14.3) or member type declaration (§8.5, §9.5) with that name, then
the AmbiguousName is reclassified as a TypeName.

e Otherwise, if a type of that name is declared in the compilation unit (§7.3)
containing the Identifier, either by a single-type-import declaration (§7.5.1), or
by a type-import-on-demand declaration (§7.5.2), or by a single-static-import
declaration (§7.5.3), or by a static-import-on-demand declaration (§7.5.4), then
the AmbiguousName is reclassified as a TypeName.

* Otherwise, the AmbiguousName is reclassified as a PackageName. A later step
determines whether or not a package of that name actually exists.

nn

If the AmbiguousName is a qualified name, consisting of a name, a ".", and an
Identifier, then the name to the left of the "." is first reclassified, for it is itself an
AmbiguousName. There is then a choice:
e If the name to the left of the "." is reclassified as a PackageName, then:

— If there is a package whose name is the name to the left of the "." and
that package contains a declaration of a type whose name is the same as the
ldentifier, then this AmbiguousName is reclassified as a TypeName.

— Otherwise, this AmbiguousName is reclassified as a PackageName. A later
step determines whether or not a package of that name actually exists.

e If the name to the left of the "." is reclassified as a TypeName, then:

— If the Identifier is the name of a method or field of the type denoted by
TypeName, this AmbiguousName is reclassified as an ExpressionName.

— Otherwise, if the Identifier is the name of a member type of the type denoted
by TypeName, this AmbiguousName is reclassified as a TypeName.

— Otherwise, a compile-time error occurs.

e If the name to the left of the "." is reclassified as an ExpressionName, then let T
be the type of the expression denoted by ExpressionName.

— If the Identifier is the name of a method or field of the type denoted by T, this
AmbiguousName is reclassified as an ExpressionName.
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— Otherwise, if the Identifier is the name of a member type (§8.5, §9.5) of the
type denoted by T, then this AmbiguousName is reclassified as a TypeName.

— Otherwise, a compile-time error occurs.

Example 6.5.2-1. Reclassification of Contextually Ambiguous Names

Consider the following contrived "library code":

package org.rpgpoet;
import java.util.Random;
public interface Music { Random[] wizards = new Random[4]; }

and then consider this example code in another package:

package bazola;
class Gabriel {
static int n = org.rpgpoet.Music.wizards.length;

}

First of all, the name org.rpgpoet.Music.wizards.length is classified as an
ExpressionName because it functions as a PostfixExpression. Therefore, each of the names:

org.rpgpoet.Music.wizards
org.rpgpoet.Music
org.rpgpoet

org

is initially classified as an AmbiguousName. These are then reclassified:
* The simple name org is reclassified as a PackageName (since there is no variable or

type named org in scope).

* Next, assuming that there is no class or interface named rpgpoet in any compilation unit
of package org (and we know that there is no such class or interface because package org
has a subpackage named rpgpoet), the qualified name org.rpgpoet is reclassified as
a PackageName.

* Next, because package org.rpgpoet has an accessible (§6.6) interface type named
Music, the qualified name org.rpgpoet.Music is reclassified as a TypeName.

* Finally, because the name org.rpgpoet.Music is a TypeName, the qualified name
org.rpgpoet.Music.wizards is reclassified as an ExpressionName.

6.5.3 Meaning of Package Names

The meaning of a name classified as a PackageName is determined as follows.
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6.53.1 Simple Package Names

If a package name consists of a single Identifier, then this identifier denotes a top
level package named by that identifier.

If no top level package of that name is in scope (§6.3), then a compile-time error
occurs.

6.5.3.2 Qualified Package Names

If a package name is of the form 9. 1d, then 0 must also be a package name. The
package name 0.1d names a package that is the member named 1d within the
package named by 0.

If o does not name an observable package (§7.4.3), or 1d is not the simple name of
an observable subpackage of that package, then a compile-time error occurs.

6.5.4 Meaning of PackageOrTypeNames

6.54.1 Simple PackageOrTypeNames

If the PackageOrTypeName, 0, occurs in the scope of a type named o, then the
PackageOrTypeName is reclassified as a TypeName.

Otherwise, the PackageOrTypeName is reclassified as a PackageName. The
meaning of the PackageOrTypeName is the meaning of the reclassified name.
6.54.2 Qualified PackageOrTypeNames

Given a qualified PackageOrTypeName of the form o. 1d, if the type or package
denoted by ghas a member type named 1d, then the qualified PackageOrTypeName
name is reclassified as a TypeName.

Otherwise, it is reclassified as a PackageName. The meaning of the qualified
PackageOrTypeName is the meaning of the reclassified name.

6.5.5 Meaning of Type Names

The meaning of a name classified as a TypeName is determined as follows.

6.5
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6.5.5.1 Simple Type Names

If a type name consists of a single Identifier, then the identifier must occur in the
scope of exactly one visible declaration of a type with this name, or a compile-time
error occurs. The meaning of the type name is that type.

6.5.5.2 Qualified Type Names

If a type name is of the form 0. 1d, then ¢ must be either a type name or a package
name.

If 1d names exactly one accessible type (§6.6) that is a member of the type or
package denoted by o, then the qualified type name denotes that type.

If 7d does not name a member type within 0 (§8.5, §9.5), or the member type named
1d within gis not accessible (§6.6), or d names more than one member type within
0, then a compile-time error occurs.

Example 6.5.5.2-1. Qualified Type Names
class Test {
public static void main(String[] args) {
java.util.Date date =

new java.util.Date(System.currentTimeMillis());
System.out.println(date.toLocaleString());

}
This program produced the following output the first time it was run:
Sun Jan 21 22:56:29 1996
In this example, the name java.util.Date must denote a type, so we first use the
procedure recursively to determine if java.util is an accessible type or a package, which
it is, and then look to see if the type Date is accessible in this package.
6.5.6 Meaning of Expression Names

The meaning of a name classified as an ExpressionName is determined as follows.

6.5.6.1 Simple Expression Names

If an expression name consists of a single Identifier, then there must be exactly one
declaration denoting either a local variable, parameter, or field visible (§6.4.1) at
the point at which the Identifier occurs. Otherwise, a compile-time error occurs.
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If the declaration denotes an instance variable (§8.3), the expression name must
appear within the declaration of an instance method (§8.4), constructor (§8.8),
instance initializer (§8.6), or instance variable initializer (§8.3.2). If the expression
name appears within a static method (§8.4.3.2), static initializer (§8.7), or
initializer for a static variable (§8.3.2, §12.4.2), then a compile-time error occurs.

If the declaration declares a £inal variable which is definitely assigned before the
simple expression, the meaning of the name is the value of that variable. Otherwise,
the meaning of the expression name is the variable declared by the declaration.

If the expression name appears in an assignment context, invocation context, or
casting context, then the type of the expression name is the declared type of the
field, local variable, or parameter after capture conversion (§5.1.10).

Otherwise, the type of the expression name is the declared type of the field, local
variable or parameter.

That is, if the expression name appears "on the right hand side", its type is subject to capture
conversion. If the expression name is a variable that appears "on the left hand side", its type
is not subject to capture conversion.

Example 6.5.6.1-1. Simple Expression Names

class Test {
static int v;
static final int f = 3;
public static void main(String[] args) {

int 1i;

i=1;

v = 2;

f = 33; // compile-time error
System.out.println(i + " " + v + " " + £f);

}

In this program, the names used as the left-hand-sides in the assignments to i, v, and £
denote the local variable i, the field v, and the value of £ (not the variable £, because f is
a final variable). The example therefore produces an error at compile time because the
last assignment does not have a variable as its left-hand side. If the erroneous assignment
is removed, the modified code can be compiled and it will produce the output:

123

6.5.6.2 Qualified Expression Names

If an expression name is of the form 9. 1d, then ¢ has already been classified as a
package name, a type name, Or an expression name.

6.5
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If o is a package name, then a compile-time error occurs.

If o is a type name that names a class type (§8 (Classes)), then:

If there is not exactly one accessible (§6.6) member of the class type that is a
field named 1d, then a compile-time error occurs.

Otherwise, if the single accessible member field is not a class variable (that is, it
is not declared static), then a compile-time error occurs.

Otherwise, if the class variable is declared final, then 9. 1d denotes the value
of the class variable.

The type of the expression 9. 1d is the declared type of the class variable after
capture conversion (§5.1.10).

If 0.1d appears in a context that requires a variable and not a value, then a
compile-time error occurs.

Otherwise, 0. 1d denotes the class variable.

The type of the expression 0. 1d is the declared type of the class variable after
capture conversion (§5.1.10).

Note that this clause covers the use of enum constants (§8.9), since these always have
a corresponding final class variable.

If o is a type name that names an interface type (§9 (Interfaces)), then:

If there is not exactly one accessible (§6.6) member of the interface type that is
a field named 1d, then a compile-time error occurs.

Otherwise, 0. 1d denotes the value of the field.

The type of the expression 9. 1d is the declared type of the field after capture
conversion (§5.1.10).

If 0.1d appears in a context that requires a variable and not a value, then a
compile-time error occurs.

If o is an expression name, let T be the type of the expression o

If 7is not a reference type, a compile-time error occurs.

If there is not exactly one accessible (§6.6) member of the type T that is a field
named 1d, then a compile-time error occurs.

Otherwise, if this field is any of the following:
— A field of an interface type



NAMES Determining the Meaning of a Name 6.5

— A final field of a class type (which may be either a class variable or an
instance variable)

— The £inal field length of an array type (§10.7)

then ¢. 1d denotes the value of the field, unless it appears in a context that requires
a variable and the field is a definitely unassigned blank final field, in which
case it yields a variable.

The type of the expression 9. 1d is the declared type of the field after capture
conversion (§5.1.10).

If 0. 1d appears in a context that requires a variable and not a value, and the field
denoted by 0. 1d is definitely assigned, then a compile-time error occurs.

* Otherwise, 0. 1d denotes a variable, the field 1d of class 7, which may be either
a class variable or an instance variable.

The type of the expression 0. 1d is the type of the field member after capture
conversion (§5.1.10).

Example 6.5.6.2-1. Qualified Expression Names

class Point {
int x, y;
static int nPoints;

}

class Test {
public static void main(String[] args) {
int 1 = 0;

i.x++; // compile-time error
Point p = new Point();
p.nPoints(); // compile-time error

}

This program encounters two compile-time errors, because the int variable i has no
members, and because nPoints is not a method of class Point.

Example 6.5.6.2-2. Qualifying an Expression with a Type Name

Note that expression names may be qualified by type names, but not by types in general.
A consequence is that it is not possible to access a class variable through a parameterized
type. For example, given the code:

class Foo<T> {
public static int classVar = 42;

}
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the following assignment is illegal:
Foo<String>.classVar = 91; // illegal
Instead, one writes:
Foo.classVar = 91;

This does not restrict the Java programming language in any meaningful way. Type
parameters may not be used in the types of static variables, and so the type arguments
of a parameterized type can never influence the type of a static variable. Therefore, no
expressive power is lost. The type name Foo appears to be a raw type, but it is not; rather,
it is the name of the non-generic type Foo whose static member is to be accessed (§6.1).
Since there is no use of a raw type, there are no unchecked warnings.

6.5.7 Meaning of Method Names

The meaning of a name classified as a MethodName is determined as follows.

6.5.7.1 Simple Method Names

A simple method name appears in the context of a method invocation expression
(§15.12). The simple method name consists of a single Identifier which specifies
the name of the method to be invoked. The rules of method invocation require
that the Identifier either denotes a method that is visible at the point of the method
invocation, or denotes a method imported by a single-static-import declaration or
static-import-on-demand declaration (§7.5.3, §7.5.4).

Example 6.5.7.1-1. Simple Method Names and Visibility

The following program demonstrates the role of method visibility when determining which
method to invoke.

class Super {
void f2(String s) {}
void f£3(String s) {}
void £3(int il, int i2) {}
}

class Test {
void fl(int i) {}
void f2(int i) {}
void £3(int i) {}

void m() {
new Super() {

{
£1(0); // OK, resolves to Test.fl(int)
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£2(0); // compile-time error
£3(0); // compile-time error

}i
}

For the invocation £1(0), only one method named £1 is visible. It is the method
Test.f1l(int), whose declaration is in scope throughout the body of Test including the
anonymous class declaration. §15.12.1 chooses to search in class Test since the anonymous
class declaration has no member named £1. Eventually, Test.£1(int) is resolved.

For the invocation £2(0), two methods named £2 are visible. First, the declaration of
the method Super.£2(String) is in scope throughout the anonymous class declaration.
Second, the declaration of the method Test.£2 (int) is in scope throughout the body of
Test including the anonymous class declaration. §15.12.1 chooses to search in class Super
because it has a member named £2. However, Super.£2(String) is not applicable to
£2(0),so a compile-time error occurs. Note that class Test is not searched.

For the invocation £3(0), three methods named £3 are visible. First and second,
the declarations of the methods Super.f3(String) and Super.f3(int,int) are in
scope throughout the anonymous class declaration. Third, the declaration of the method
Test.£3(int) is in scope throughout the body of Test including the anonymous class
declaration. §15.12.1 chooses to search in class Super because it has a member named £3.
However, Super.£3(String) and Super.£3(int,int) are not applicable to £3(0),so
a compile-time error occurs. Note that class Test is not searched.

Choosing to search a nested class's superclass hierarchy before the lexically enclosing scope
is called the "comb rule" (§15.12.1).

6.6 Access Control

The Java programming language provides mechanisms for access control, to
prevent the users of a package or class from depending on unnecessary details of the
implementation of that package or class. If access is permitted, then the accessed
entity is said to be accessible.

Note that accessibility is a static property that can be determined at compile time;
it depends only on types and declaration modifiers.

Qualified names are a means of access to members of packages and reference
types. When the name of such a member is classified from its context (§6.5.1) as a
qualified type name (denoting a member of a package or reference type, §6.5.5.2)
or a qualified expression name (denoting a member of a reference type, §6.5.6.2),
access control is applied.

6.6
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For example, a single-type-import statement (§7.5.1) uses a qualified type name, so the
named type must be accessible from the compilation unit containing the import statement.
As another example, a class declaration may use a qualified type name for a superclass
(§8.1.5), and again the named type must be accessible.

Some obvious expressions are "missing" from context classification in §6.5.1: field access
on a Primary (§15.11.1), method invocation on a Primary (§15.12), method reference via
a Primary (§15.13), and the instantiated class in a qualified class instance creation (§15.9).
Each of these expressions uses identifiers, rather than names, for the reason given in §6.2.
Consequently, access control to members (whether fields, methods, or types) is applied
explicitly by field access expressions, method invocation expressions, method reference
expressions, and qualified class instance creation expressions. (Note that access to a field
may also be denoted by a qualified name occuring as a postfix expression.)

In addition, many statements and expressions allow the use of types rather than type
names. For example, a class declaration may use a parameterized type (§4.5) to denote
a superclass. Because a parameterized type is not a qualified type name, it is necessary
for the class declaration to explicitly perform access control for the denoted superclass.
Consequently, most of the statements and expressions that provide contexts in §6.5.1 to
classify a TypeName also perform their own access control checks.

Beyond access to members of a package or reference type, there is the matter of access
to constructors of a reference type. Access control must be checked when a constructor
is invoked explicitly or implicitly. Consequently, access control is checked by an explicit
constructor invocation statement (§8.8.7.1) and by a class instance creation expression
(§15.9.3). Such checks are necessary because §6.5.1 has no mention of explicit constructor
invocation statements (because they reference constructor names indirectly) and is unaware
of the distinction between the class type denoted by an unqualified class instance creation
expression and a constructor of that class type. Also, constructors do not have qualified
names, so we cannot rely on access control being checked during classification of qualified
type names.

Accessibility affects inheritance of class members (§8.2), including hiding and method
overriding (§8.4.8.1).

6.6.1 Determining Accessibility

* A package is always accessible.

» If a class or interface type is declared public, then it may be accessed by
any code, provided that the compilation unit (§7.3) in which it is declared is
observable.

If a class or interface type is declared with package access, then it may be
accessed only from within the package in which it is declared.

A class or interface type declared without an access modifier implicitly has
package access.

* An array type is accessible if and only if its element type is accessible.
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* A member (class, interface, field, or method) of a reference type, or a constructor
of a class type, is accessible only if the type is accessible and the member or
constructor is declared to permit access:

— If the member or constructor is declared public, then access is permitted.
All members of interfaces lacking access modifiers are implicitly public.

— Otherwise, if the member or constructor is declared protected, then access is
permitted only when one of the following is true:

> Access to the member or constructor occurs from within the package
containing the class in which the protected member or constructor is
declared.

> Access is correct as described in §6.6.2.

— Otherwise, if the member or constructor is declared with package access, then
access is permitted only when the access occurs from within the package in
which the type is declared.

A class member or constructor declared without an access modifier implicitly
has package access.

— Otherwise, the member or constructor is declared private, and access is
permitted if and only if it occurs within the body of the top level class (§7.6)
that encloses the declaration of the member or constructor.

Example 6.6-1. Access Control

Consider the two compilation units:

package points;
class PointVec { Point[] vec; }

and:

package points;
public class Point {
protected int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }
public int getX() { return x; }
public int getY() { return y; }
}

which declare two class types in the package points:

* The class type PointVec is not public and not part of the public interface of the
package points, but rather can be used only by other classes in the package.
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* The class type Point is declared public and is available to other packages. It is part
of the public interface of the package points.

¢ The methods move, getX, and getY of the class Point are declared public and so are
available to any code that uses an object of type Point.

* The fields x and y are declared protected and are accessible outside the package
points only in subclasses of class Point, and only when they are fields of objects that
are being implemented by the code that is accessing them.

See §6.6.2 for an example of how the protected access modifier limits access.
Example 6.6-2. Access to public Fields, Methods, and Constructors

A public class member or constructor is accessible throughout the package where it is
declared and from any other package, provided the package in which it is declared is
observable (§7.4.3). For example, in the compilation unit:

package points;
public class Point {
int x, y;
public void move(int dx, int dy) {
x += dx; y += dy;
moves++;

}

public static int moves = 0;

the public class Point has as public members the move method and the moves field.
These public members are accessible to any other package that has access to package
points. The fields x and y are not public and therefore are accessible only from within
the package points.

Example 6.6-3. Access to public and Non-public Classes

If a class lacks the public modifier, access to the class declaration is limited to the package
in which it is declared (§6.6). In the example:

package points;
public class Point {
public int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }
}
class PointList {
Point next, prev;

two classes are declared in the compilation unit. The class Point is available outside
the package points, while the class PointList is available for access only within the
package. Thus a compilation unit in another package can access points.Point, either by
using its fully qualified name:
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package pointsUser;
class Testl {
public static void main(String[] args) {
points.Point p = new points.Point();
System.out.println(p.x + " " + p.y);

or by using a single-type-import declaration (§7.5.1) that mentions the fully qualified name,
so that the simple name may be used thereafter:

package pointsUser;
import points.Point;
class Test2 {
public static void main(String[] args) {
Point p = new Point();
System.out.println(p.x +

+ p.Y)i

However, this compilation unit cannot use or import points.PointList, which is not
declared public and is therefore inaccessible outside package points.

Example 6.6-4. Access to Package-Access Fields, Methods, and Constructors

If none of the access modifiers public, protected, or private are specified, a class
member or constructor has package access: it is accessible throughout the package that
contains the declaration of the class in which the class member is declared, but the class
member or constructor is not accessible in any other package.

If a public class has a method or constructor with package access, then this method or
constructor is not accessible to or inherited by a subclass declared outside this package.

For example, if we have:

package points;
public class Point {
public int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
public void moveAlso(int dx, int dy) { move(dx, dy); }

then a subclass in another package may declare an unrelated move method, with the same
signature (§8.4.2) and return type. Because the original move method is not accessible from
package morepoints, super may not be used:

package morepoints;
public class PlusPoint extends points.Point {
public void move(int dx, int dy) {
super.move(dx, dy); // compile-time error
moveAlso(dx, dy);
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Because move of Point is not overridden by move in PlusPoint, the method moveAlso
in Point never calls the method move in PlusPoint. Thus if you delete the super .move
call from PlusPoint and execute the test program:

import points.Point;
import morepoints.PlusPoint;
class Test {
public static void main(String[] args) {
PlusPoint pp = new PlusPoint();
pp.move(l, 1);

it terminates normally. If move of Point were overridden by move in PlusPoint, then
this program would recurse infinitely, until a StackOverflowError occurred.

Example 6.6-5. Access to private Fields, Methods, and Constructors

A private class member or constructor is accessible only within the body of the top level
class (§7.6) that encloses the declaration of the member or constructor. It is not inherited
by subclasses. In the example:

class Point {
Point() { setMasterID(); }
int x, y;
private int ID;
private static int masterID = 0;
private void setMasterID() { ID = masterID++; }

the private members ID, masterID, and setMasterID may be used only within the body
of class Point. They may not be accessed by qualified names, field access expressions, or
method invocation expressions outside the body of the declaration of Point.

See §8.8.8 for an example that uses a private constructor.

6.6.2 Details on protected Access

A protected member or constructor of an object may be accessed from outside
the package in which it is declared only by code that is responsible for the
implementation of that object.
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6.6.2.1 Access to a protected Member

Let c be the class in which a protected member is declared. Access is permitted
only within the body of a subclass s of c.

In addition, if /d denotes an instance field or instance method, then:

* If the access is by a qualified name ©. 1d or a method reference expression ¢ ::
1d (§15.13), where ¢ is an ExpressionName, then the access is permitted if and
only if the type of the expression g is s or a subclass of s.

» If the access is by a field access expression E.Id, or a method invocation
expression E. Id(...),or a method reference expression E :: 1d, where Eis a
Primary expression (§15.8), then the access is permitted if and only if the type
of Eis s or a subclass of s.

* If the access is by a method reference expression T :: 1Id, where T is a
ReferenceType, then the access is permitted if and only if the type Tis s or a
subclass of s.

More information about access to protected members can be found in Checking Access
to Protected Members in the Java Virtual Machine by Alessandro Coglio, in the Journal
of Object Technology, October 2005.

6.6.2.2 Qualified Access to a protected Constructor

Let c be the class in which a protected constructor is declared and let s be the
innermost class in whose declaration the use of the protected constructor occurs.
Then:

» If the access is by a superclass constructor invocation super(...), Or a
qualified superclass constructor invocation E.super( . . . ), Where Eis a Primary
expression, then the access is permitted.

o If the access is by an anonymous class instance creation expression new C(. . .)
{...}, or a qualified anonymous class instance creation expression E.new
Cc(...){...},where Eis a Primary expression, then the access is permitted.

* If the access is by a simple class instance creation expression new C(...),0r a
qualified class instance creation expression E.new C( . . . ), Where E is a Primary
expression, or a method reference expression C : : new, where c is a ClassType,
then the access is not permitted. A protected constructor can be accessed by a
class instance creation expression (that does not declare an anonymous class) or a
method reference expression only from within the package in which it is defined.
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Example 6.6.2-1. Access to protected Fields, Methods, and Constructors
Consider this example, where the points package declares:

package points;
public class Point {
protected int x, y;
void warp(threePoint.Point3d a) {
if (a.z > 0) // compile-time error: cannot access a.z
a.delta(this);

and the threePoint package declares:

package threePoint;
import points.Point;
public class Point3d extends Point {
protected int z;
public void delta(Point p) {
p.x += this.x; // compile-time error: cannot access p.x
p.y += this.y; // compile-time error: cannot access p.y
}
public void delta3d(Point3d q) {
g.x += this.x;
g.y += this.y;
g.z += this.z;

A compile-time error occurs in the method delta here: it cannot access the protected
members x and y of its parameter p, because while Point3d (the class in which the
references to fields x and y occur) is a subclass of Point (the class in which x and y are
declared), it is not involved in the implementation of a Point (the type of the parameter p).
The method delta3d can access the protected members of its parameter g, because the
class Point3dis a subclass of Point and is involved in the implementation of a Point3d.

The method delta could try to cast (§5.5, §15.16) its parameter to be a Point3d, but this
cast would fail, causing an exception, if the class of p at run time were not Point3d.

A compile-time error also occurs in the method warp: it cannot access the protected
member z of its parameter a, because while the class Point (the class in which the reference
to field z occurs) is involved in the implementation of a Point3d (the type of the parameter
a), it is not a subclass of Point3d (the class in which z is declared).
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6.7 Fully Qualified Names and Canonical Names

Every primitive type, named package, top level class, and top level interface has
a fully qualified name:

* The fully qualified name of a primitive type is the keyword for that primitive
type, namely byte, short, char, int, long, float, double, Or boolean.

* The fully qualified name of a named package that is not a subpackage of a named
package is its simple name.

* The fully qualified name of a named package that is a subpackage of another
named package consists of the fully qualified name of the containing package,
followed by ".", followed by the simple (member) name of the subpackage.

* The fully qualified name of a top level class or top level interface that is declared
in an unnamed package is the simple name of the class or interface.

* The fully qualified name of a top level class or top level interface that is declared
in a named package consists of the fully qualified name of the package, followed
by ".", followed by the simple name of the class or interface.

Each member class, member interface, and array type may have a fully qualified
name:

* A member class or member interface » of another class or interface ¢ has a fully
qualified name if and only if ¢ has a fully qualified name.

In that case, the fully qualified name of m consists of the fully qualified name of
c, followed by ".", followed by the simple name of m.

* An array type has a fully qualified name if and only if its element type has a
fully qualified name.

In that case, the fully qualified name of an array type consists of the fully
qualified name of the component type of the array type followed by "[]1".

A local class does not have a fully qualified name.

Every primitive type, named package, top level class, and top level interface has
a canonical name:

» For every primitive type, named package, top level class, and top level interface,
the canonical name is the same as the fully qualified name.

Each member class, member interface, and array type may have a canonical name:

6.7
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¢ A member class or member interface M declared in another class or interface ¢
has a canonical name if and only if ¢ has a canonical name.

In that case, the canonical name of Mconsists of the canonical name of ¢, followed
by ".", followed by the simple name of m.

* An array type has a canonical name if and only if its component type has a
canonical name.

In that case, the canonical name of the array type consists of the canonical name
of the component type of the array type followed by "[1".

A local class does not have a canonical name.

Example 6.7-1. Fully Qualified Names

* The fully qualified name of the type long is "long".

e The fully qualified name of the package java.lang is "java.lang" because it is
subpackage lang of package java.

e The fully qualified name of the class Object, which is defined in the package
java.lang,is "java.lang.Object".

* The fully qualified name of the interface Enumeration, which is defined in the package
java.util,is "java.util.Enumeration".

e The fully qualified name of the type "array of double" is "double[ ]".

e The fully qualified name of the type "array of array of array of array of String" is

"java.lang.String[][]1[]1[]".
In the code:

package points;
class Point { int x, y; }
class PointVec { Point[] vec; }

the fully qualified name of the type Point is "points.Point"; the fully qualified name
of the type PointVec is "points.PointVec"; and the fully qualified name of the type of
the field vec of class PointVec is "points.Point[]".

Example 6.7-2. Fully Qualified Names v. Canonical Name

The difference between a fully qualified name and a canonical name can be seen in code
such as:

package p;
class Ol { class I {} }
class 02 extends Ol {}
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Both p.01.1 and p.02.1 are fully qualified names that denote the member class I, but
only p.01.I is its canonical name.
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CHAPTER7

Packages

PROGRAMS are organized as sets of packages. Each package has its own set of
names for types, which helps to prevent name conflicts.

A top level type is accessible (§6.6) outside the package that declares it only if the
type is declared public.

The naming structure for packages is hierarchical (§7.1). The members of a package
are class and interface types (§7.6), which are declared in compilation units of the
package, and subpackages, which may contain compilation units and subpackages
of their own.

A package can be stored in a file system or in a database (§7.2). Packages that are
stored in a file system may have certain constraints on the organization of their
compilation units to allow a simple implementation to find classes easily.

A package consists of a number of compilation units (§7.3). A compilation unit
automatically has access to all types declared in its package and also automatically
imports all of the public types declared in the predefined package java.lang.

For small programs and casual development, a package can be unnamed (§7.4.2) or
have a simple name, but if code is to be widely distributed, unique package names
should be chosen using qualified names. This can prevent the conflicts that would
otherwise occur if two development groups happened to pick the same package
name and these packages were later to be used in a single program.

7.1 Package Members

The members of a package are its subpackages and all the top level class types
(§7.6, §8 (Classes)) and top level interface types (§9 (Interfaces)) declared in all
the compilation units (§7.3) of the package.
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For example, in the Java SE platform API:

* The package java has subpackages awt, applet, io, lang, net, and util, but no
compilation units.

* The package java.awt has a subpackage named image, as well as a number of
compilation units containing declarations of class and interface types.

If the fully qualified name (§6.7) of a package is P, and ¢ is a subpackage of p,
then p. o is the fully qualified name of the subpackage, and furthermore denotes
a package.

A package may not contain two members of the same name, or a compile-time
error results.

Here are some examples:

* Because the package java.awt has a subpackage image, it cannot (and does not)
contain a declaration of a class or interface type named image.

 If there is a package named mouse and a member type Button in that package (which
then might be referred to as mouse . Button), then there cannot be any package with the
fully qualified name mouse.Button or mouse.Button.Click.

e Ifcom.nighthacks.java.jag is the fully qualified name of a type, then there cannot
be any package whose fully qualified name is either com.nighthacks.java.jag or
com.nighthacks.java.jag.scrabble.

It is however possible for members of different packages to have the same simple name.
For example, it is possible to declare a package:

package vector;
public class Vector { Object[] vec; }

that has as a member a public class named Vector, even though the package java.util
also declares a class named Vector. These two class types are different, reflected by the
fact that they have different fully qualified names (§6.7). The fully qualified name of this
example Vector is vector.Vector, whereas java.util.Vector is the fully qualified
name of the Vector class included in the Java SE platform. Because the package vector
contains a class named Vector, it cannot also have a subpackage named vector.

The hierarchical naming structure for packages is intended to be convenient for
organizing related packages in a conventional manner, but has no significance in
itself other than the prohibition against a package having a subpackage with the
same simple name as a top level type (§7.6) declared in that package.

For example, there is no special access relationship between a package named oliver and
another package named oliver.twist, or between packages named evelyn.wood and
evelyn.waugh. That is, the code in a package named oliver.twist has no better access
to the types declared within package oliver than code in any other package.



PACKAGES Host Support for Packages

7.2 Host Support for Packages

Each host system determines how packages and compilation units are created and
stored.

Each host system also determines which compilation units are observable (§7.3) in
a particular compilation. The observability of compilation units in turn determines
which packages are observable, and which packages are in scope.

In simple implementations of the Java SE platform, packages and compilation units
may be stored in a local file system. Other implementations may store them using
a distributed file system or some form of database.

If a host system stores packages and compilation units in a database, then the
database must not impose the optional restrictions (§7.6) on compilation units
permissible in file-based implementations.

For example, a system that uses a database to store packages may not enforce a maximum
of one public class or interface per compilation unit.

Systems that use a database must, however, provide an option to convert a
program to a form that obeys the restrictions, for purposes of export to file-based
implementations.

As an extremely simple example of storing packages in a file system, all the packages
and source and binary code in a project might be stored in a single directory and its
subdirectories. Each immediate subdirectory of this directory would represent a top level
package, that is, one whose fully qualified name consists of a single simple name. Each
further level of subdirectory would represent a subpackage of the package represented by
the containing directory, and so on.

The directory might contain the following immediate subdirectories:

com
gls
jag
Jjava
wnj

where directory java would contain the Java SE platform packages; the directories jag,
gls, and wnj might contain packages that three of the authors of this specification created
for their personal use and to share with each other within this small group; and the directory
com would contain packages procured from companies that used the conventions described
in §6.1 to generate unique names for their packages.

Continuing the example, the directory java would contain, among others, the following
subdirectories:

7.2
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applet
awt

io
lang
net
util

corresponding to the packages java.applet, java.awt, java.io, java.lang,
java.net, and java.util that are defined as part of the Java SE platform API.

Still continuing the example, if we were to look inside the directory util, we might see
the following files:

BitSet.java Observable. java
BitSet.class Observable.class
Date.java Observer. java
Date.class Observer.class

where each of the . java files contains the source for a compilation unit (§7.3) that contains
the definition of a class or interface whose binary compiled form is contained in the
corresponding .class file.

Under this simple organization of packages, an implementation of the Java SE platform
would transform a package name into a pathname by concatenating the components of
the package name, placing a file name separator (directory indicator) between adjacent
components.

For example, if this simple organization were used on an operating system where the file
name separator is /, the package name:

jag.scrabble.board
would be transformed into the directory name:
jag/scrabble/board

A package name component or class name might contain a character that cannot correctly
appear in a host file system's ordinary directory name, such as a Unicode character on a
system that allows only ASCII characters in file names. As a convention, the character can
be escaped by using, say, the @ character followed by four hexadecimal digits giving the
numeric value of the character, as in the \uxxxx escape (§3.3).

Under this convention, the package name:
children.activities.crafts.papierM\u0Oe2ch\u00e9
which can also be written using full Unicode as:

children.activities.crafts.papierMaché
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might be mapped to the directory name:
children/activities/crafts/papierM@00e2ch@00e9

If the @ character is not a valid character in a file name for some given host file system,
then some other character that is not valid in a identifier could be used instead.

7.3 Compilation Units

CompilationUnit is the goal symbol (§2.1) for the syntactic grammar (§2.3) of Java
programs. It is defined by the following productions:

CompilationUnit:
[PackageDeclaration] {ImportDeclaration} { TypeDeclaration}

A compilation unit consists of three parts, each of which is optional:

* A package declaration (§7.4), giving the fully qualified name (§6.7) of the
package to which the compilation unit belongs.

A compilation unit that has no package declaration is part of an unnamed
package (§7.4.2).

* import declarations (§7.5) that allow types from other packages and static
members of types to be referred to using their simple names.

* Top level type declarations (§7.6) of class and interface types.

Every compilation unit implicitly imports every public type name declared in
the predefined package java.lang, as if the declaration import java.lang.*;
appeared at the beginning of each compilation unit immediately after any package
statement. As a result, the names of all those types are available as simple names
in every compilation unit.

All the compilation units of the predefined package java and its subpackages lang
and io are always observable.

For all other packages, the host system determines which compilation units are
observable.

The observability of a compilation unit influences the observability of its package (§7.4.3).

Types declared in different compilation units can depend on each other, circularly.
A Java compiler must arrange to compile all such types at the same time.
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A package declaration appears within a compilation unit to indicate the package
to which the compilation unit belongs.

7.4.1 Named Packages

A package declaration in a compilation unit specifies the name (§6.2) of the
package to which the compilation unit belongs.

PackageDeclaration:
{PackageModifier} package Identifier {. Identifier} ;

PackageModifier:
Annotation

The package name mentioned in a package declaration must be the fully qualified
name of the package (§6.7).

The scope and shadowing of a package declaration is specified in §6.3 and §6.4.

The rules for annotation modifiers on a package declaration are specified in §9.7.4
and §9.7.5.

At most one annotated package declaration is permitted for a given package.

The manner in which this restriction is enforced must, of necessity, vary from
implementation to implementation. The following scheme is strongly recommended for
file-system-based implementations: The sole annotated package declaration, if it exists, is
placed in a source file called package-info. java in the directory containing the source
files for the package. This file does not contain the source for a class called package-
info.java; indeed it would be illegal for it to do so, as package-info is not a legal
identifier. Typically package-info. java contains only a package declaration, preceded
immediately by the annotations on the package. While the file could technically contain the
source code for one or more classes with package access, it would be very bad form.

It is recommended that package-info.java, if it is present, take the place of
package.html for javadoc and other similar documentation generation systems. If
this file is present, the documentation generation tool should look for the package
documentation comment immediately preceding the (possibly annotated) package
declaration in package-info.java. In this way, package-info.java becomes the
sole repository for package-level annotations and documentation. If, in future, it becomes
desirable to add any other package-level information, this file should prove a convenient
home for this information.
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74.2 Unnamed Packages

A compilation unit that has no package declaration is part of an unnamed package.

Unnamed packages are provided by the Java SE platform principally for
convenience when developing small or temporary applications or when just
beginning development.

An unnamed package cannot have subpackages, since the syntax of a package
declaration always includes a reference to a named top level package.

An implementation of the Java SE platform must support at least one unnamed
package. An implementation may support more than one unnamed package, but
is not required to do so. Which compilation units are in each unnamed package is
determined by the host system.

The compilation unit:

class FirstCall {
public static void main(String[] args) {
System.out.println("Mr. Watson, come here.
+ "I want you.");

}
defines a very simple compilation unit as part of an unnamed package.

In implementations of the Java SE platform that use a hierarchical file system for storing
packages, one typical strategy is to associate an unnamed package with each directory; only
one unnamed package is observable at a time, namely the one that is associated with the
"current working directory". The precise meaning of "current working directory" depends
on the host system.

7.4.3 Observability of a Package

A package is observable if and only if either:
* A compilation unit containing a declaration of the package is observable (§7.3).
* A subpackage of the package is observable.

The packages java, java.lang, and java.io are always observable.

One can conclude this from the rule above and from the rules of observable compilation
units, as follows. The predefined package java.lang declares the class Object, so the
compilation unit for Object is always observable (§7.3). Hence, the java. lang package is
observable (§7.4.3), and the java package also. Furthermore, since Object is observable,
the array type Object[ ] implicitly exists. Its superinterface java.io.Serializable
(§10.1) also exists, hence the java.io package is observable.
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7.5 Import Declarations

An import declaration allows a named type or a static member to be referred to
by a simple name (§6.2) that consists of a single identifier.

Without the use of an appropriate import declaration, the only way to refer to a
type declared in another package, or a static member of another type, is to use
a fully qualified name (§6.7).

ImportDeclaration:
SingleTypelmportDeclaration
TypelmportOnDemandDeclaration
SingleStaticImportDeclaration
StaticlmportOnDemandDeclaration

* A single-type-import declaration (§7.5.1) imports a single named type, by
mentioning its canonical name (§6.7).

A type-import-on-demand declaration (§7.5.2) imports all the accessible types
(§6.6) of a named type or named package as needed, by mentioning the canonical
name of a type or package.

A single-static-import declaration (§7.5.3) imports all accessible static
members with a given name from a type, by giving its canonical name.

A static-import-on-demand declaration (§7.5.4) imports all accessible static
members of a named type as needed, by mentioning the canonical name of a type.

The scope and shadowing of a type or member imported by these declarations is
specified in §6.3 and §6.4.

An import declaration makes types or members available by their simple names only
within the compilation unit that actually contains the import declaration. The scope of the
type(s) or member(s) introduced by an import declaration specifically does not include
other compilation units in the same package, other import declarations in the current
compilation unit, or a package declaration in the current compilation unit (except for the
annotations of a package declaration).

7.5.1 Single-Type-Import Declarations

A single-type-import declaration imports a single type by giving its canonical
name, making it available under a simple name in the class and interface
declarations of the compilation unit in which the single-type-import declaration
appears.
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SingleTypelmportDeclaration:
import TypeName ;

The TypeName must be the canonical name of a class type, interface type, enum
type, or annotation type (§6.7).

The name must be qualified (§6.5.5.2), or a compile-time error occurs.
It is a compile-time error if the named type is not accessible (§6.6).

If two single-type-import declarations in the same compilation unit attempt to
import types with the same simple name, then a compile-time error occurs, unless
the two types are the same type, in which case the duplicate declaration is ignored.

If the type imported by the single-type-import declaration is declared in the
compilation unit that contains the import declaration, the import declaration is
ignored.

If a single-type-import declaration imports a type whose simple name is n, and the
compilation unit also declares a top level type (§7.6) whose simple name is n, a
compile-time error occurs.

If a compilation unit contains both a single-type-import declaration that imports a
type whose simple name is n, and a single-static-import declaration (§7.5.3) that
imports a type whose simple name is n, a compile-time error occurs.

Example 7.5.1-1. Single-Type-Import

import java.util.Vector;

causes the simple name Vector to be available within the class and interface declarations
in a compilation unit. Thus, the simple name Vector refers to the type declaration Vector
in the package java.util in all places where it is not shadowed (§6.4.1) or obscured
(§6.4.2) by a declaration of a field, parameter, local variable, or nested type declaration
with the same name.

Note that the actual declaration of java.util.Vector is generic (§8.1.2). Once imported,
the name Vector can be used without qualification in a parameterized type such as
Vector<String>, or as the raw type Vector. A related limitation of the import
declaration is that a nested type declared inside a generic type declaration can be imported,
but its outer type is always erased.

Example 7.5.1-2. Duplicate Type Declarations
This program:

import java.util.Vector;
class Vector { Object[] vec; }
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causes a compile-time error because of the duplicate declaration of vector, as does:

import java.util.Vector;
import myVector.Vector;

where myVector is a package containing the compilation unit:

package myVector;
public class Vector { Object[] vec; }

Example 7.5.1-3. No Import of a Subpackage
Note that an import statement cannot import a subpackage, only a type.

For example, it does not work to try to import java.util and then use the name
util.Random to refer to the type java.util.Random:

import java.util;
class Test { util.Random generator; }
// incorrect: compile-time error

Example 7.5.1-4. Importing a Type Name that is also a Package Name

Package names and type names are usually different under the naming conventions
described in §6.1. Nevertheless, in a contrived example where there is an unconventionally-
named package Vector, which declares a public class whose name is Mosquito:

package Vector;
public class Mosquito { int capacity; }

and then the compilation unit:

package strange;
import java.util.Vector;
import Vector.Mosquito;
class Test {
public static void main(String[] args) {
System.out.println(new Vector().getClass());
System.out.println(new Mosquito().getClass());

the single-type-import declaration importing class Vector from package java.util does
not prevent the package name Vector from appearing and being correctly recognized in
subsequent import declarations. The example compiles and produces the output:

class java.util.Vector
class Vector.Mosquito
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7.5.2 Type-Import-on-Demand Declarations

A type-import-on-demand declaration allows all accessible types of a named
package or type to be imported as needed.

TypelmportOnDemandDeclaration:
import PackageOrTypeName . * ;

The PackageOrTypeName must be the canonical name (§6.7) of a package, a class
type, an interface type, an enum type, or an annotation type.

If the PackageOrTypeName denotes a type (§6.5.4), then the name must be
qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named package or type is not accessible (§6.6).

Itis not a compile-time error to name either java. lang or the named package of the
current compilation unit in a type-import-on-demand declaration. The type-import-
on-demand declaration is ignored in such cases.

Two or more type-import-on-demand declarations in the same compilation unit
may name the same type or package. All but one of these declarations are
considered redundant; the effect is as if that type was imported only once.

If a compilation unit contains both a type-import-on-demand declaration and a
static-import-on-demand declaration (§7.5.4) that name the same type, the effect is
as if the static member types of that type (§8.5, §9.5) were imported only once.

Example 7.5.2-1. Type-Import-on-Demand

import java.util.*;

causes the simple names of all public types declared in the package java.util to be
available within the class and interface declarations of the compilation unit. Thus, the
simple name Vector refers to the type Vector in the package java.util in all places
in the compilation unit where that type declaration is not shadowed (§6.4.1) or obscured
(§6.4.2).

The declaration might be shadowed by a single-type-import declaration of a type whose
simple name is Vector; by a type named Vector and declared in the package to which the
compilation unit belongs; or any nested classes or interfaces.

The declaration might be obscured by a declaration of a field, parameter, or local variable
named Vector.

(It would be unusual for any of these conditions to occur.)

7.5
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7.5.3 Single-Static-Import Declarations

A single-static-import declaration imports all accessible static members with a
given simple name from a type. This makes these static members available under
their simple name in the class and interface declarations of the compilation unit in
which the single-static-import declaration appears.

SingleStaticImportDeclaration:
import static TypeName . Identifier ;

The TypeName must be the canonical name (§6.7) of a class type, interface type,
enum type, or annotation type.

The name must be qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named type is not accessible (§6.6).

The Identifier must name at least one static member of the named type. It is a
compile-time error if there is no static member of that name, or if all of the named
members are not accessible.

It is permissible for one single-static-import declaration to import several fields or
types with the same name, or several methods with the same name and signature.

If a single-static-import declaration imports a type whose simple name is n, and
the compilation unit also declares a top level type (§7.6) whose simple name is n,
a compile-time error occurs.

If a compilation unit contains both a single-static-import declaration that imports
a type whose simple name is n, and a single-type-import declaration (§7.5.1) that
imports a type whose simple name is n, a compile-time error occurs.

7.5.4 Static-Import-on-Demand Declarations

A static-import-on-demand declaration allows all accessible static members of
a named type to be imported as needed.

StaticImportOnDemandDeclaration:
import static TypeName . * ;

The TypeName must be the canonical name (§6.7) of a class type, interface type,
enum type, or annotation type.
The name must be qualified (§6.5.5.2), or a compile-time error occurs.

It is a compile-time error if the named type is not accessible (§6.6).
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Two or more static-import-on-demand declarations in the same compilation unit
may name the same type; the effect is as if there was exactly one such declaration.

Two or more static-import-on-demand declarations in the same compilation unit
may name the same member; the effect is as if the member was imported exactly
once.

It is permissible for one static-import-on-demand declaration to import several
fields or types with the same name, or several methods with the same name and
signature.

If a compilation unit contains both a static-import-on-demand declaration and a
type-import-on-demand declaration (§7.5.2) that name the same type, the effect is
as if the static member types of that type (§8.5, §9.5) were imported only once.

7.6 Top Level Type Declarations

A top level type declaration declares a top level class type (§8 (Classes)) or a top
level interface type (§9 (Interfaces)).

TypeDeclaration:
ClassDeclaration
InterfaceDeclaration

r

Extra ";" tokens appearing at the level of type declarations in a compilation unit have no
effect on the meaning of the compilation unit. Stray semicolons are permitted in the Java
programming language solely as a concession to C++ programmers who are used to placing

;" after a class declaration. They should not be used in new Java code.

In the absence of an access modifier, a top level type has package access: it is
accessible only within compilation units of the package in which it is declared
(§6.6.1). A type may be declared public to grant access to the type from code in
other packages.

It is a compile-time error if a top level type declaration contains any one of the
following access modifiers: protected, private, Or static.

It is a compile-time error if the name of a top level type appears as the name of any
other top level class or interface type declared in the same package.

The scope and shadowing of a top level type is specified in §6.3 and §6.4.
The fully qualified name of a top level type is specified in §6.7.
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Example 7.6-1. Conflicting Top Level Type Declarations

package test;

import java.util.Vector;

class Point {
int x, y;

}

interface Point { // compile-time error #1
int getR();
int getTheta();

}

class Vector { Point[] pts; } // compile-time error #2

Here, the first compile-time error is caused by the duplicate declaration of the name Point
as both a class and an interface in the same package. A second compile-time error is the
attempt to declare the name Vector both by a class type declaration and by a single-type-
import declaration.

Note,however, that it is not an error for the name of a class to also name a type that otherwise
might be imported by a type-import-on-demand declaration (§7.5.2) in the compilation unit
(§7.3) containing the class declaration. Thus, in this program:

package test;
import java.util.*;
class Vector {} // not a compile-time error

the declaration of the class Vector is permitted even though there is also a class
java.util.Vector. Within this compilation unit, the simple name Vector refers to the
class test.Vector, not to java.util.Vector (which can still be referred to by code
within the compilation unit, but only by its fully qualified name).

Example 7.6-2. Scope of Top Level Types

package points;
class Point {

int x, y; // coordinates
PointColor color; // color of this point
Point next; // next point with this color
static int nPoints;

}

class PointColor {
Point first; // first point with this color
PointColor(int color) { this.color = color; }
private int color; // color components

}

This program defines two classes that use each other in the declarations of their class
members. Because the class types Point and PointColor have all the type declarations
in package points, including all those in the current compilation unit, as their scope, this
program compiles correctly. That is, forward reference is not a problem.
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Example 7.6-3. Fully Qualified Names

class Point { int x, y; }

In this code, the class Point is declared in a compilation unit with no package statement,
and thus Point is its fully qualified name, whereas in the code:

package vista;
class Point { int x, y; }

the fully qualified name of the class Point is vista.Point. (The package name vista
is suitable for local or personal use; if the package were intended to be widely distributed,
it would be better to give it a unique package name (§6.1).)

An implementation of the Java SE platform must keep track of types within
packages by their binary names (§13.1). Multiple ways of naming a type must be
expanded to binary names to make sure that such names are understood as referring
to the same type.

For example, if a compilation unit contains the single-type-import declaration (§7.5.1):
import java.util.Vector;

then within that compilation unit, the simple name Vector and the fully qualified name
java.util.Vector refer to the same type.

If and only if packages are stored in a file system (§7.2), the host system may
choose to enforce the restriction that it is a compile-time error if a type is not found
in a file under a name composed of the type name plus an extension (such as . java
or .jav) if either of the following is true:

* The type is referred to by code in other compilation units of the package in which
the type is declared.

* The type is declared public (and therefore is potentially accessible from code
in other packages).

This restriction implies that there must be at most one such type per compilation unit.
This restriction makes it easy for a Java compiler to find a named class within a package.
In practice, many programmers choose to put each class or interface type in its own
compilation unit, whether or not it is public or is referred to by code in other compilation
units.

For example, the source code for a public type wet.sprocket.Toad would be found
in a file Toad. java in the directory wet/sprocket, and the corresponding object code
would be found in the file Toad.class in the same directory.
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CHAPTER 8

Classes

CLASS declarations define new reference types and describe how they are
implemented (§8.1).

A top level class is a class that is not a nested class.

A nested class is any class whose declaration occurs within the body of another
class or interface.

This chapter discusses the common semantics of all classes - top level (§7.6)
and nested (including member classes (§8.5, §9.5), local classes (§14.3) and
anonymous classes (§15.9.5)). Details that are specific to particular kinds of classes
are discussed in the sections dedicated to these constructs.

A named class may be declared abstract (§8.1.1.1) and must be declared abstract
if it is incompletely implemented; such a class cannot be instantiated, but can be
extended by subclasses. A class may be declared £inal (§8.1.1.2), in which case it
cannot have subclasses. If a class is declared public, then it can be referred to from
other packages. Each class except object is an extension of (that is, a subclass of)
a single existing class (§8.1.4) and may implement interfaces (§8.1.5). Classes may
be generic (§8.1.2), that is, they may declare type variables whose bindings may
differ among different instances of the class.

Classes may be decorated with annotations (§9.7) just like any other kind of
declaration.

The body of a class declares members (fields and methods and nested classes
and interfaces), instance and static initializers, and constructors (§8.1.6). The
scope (§6.3) of a member (§8.2) is the entire body of the declaration of the class
to which the member belongs. Field, method, member class, member interface,
and constructor declarations may include the access modifiers (§6.6) public,
protected, or private. The members of a class include both declared and
inherited members (§8.2). Newly declared fields can hide fields declared in a
superclass or superinterface. Newly declared class members and interface members
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can hide class or interface members declared in a superclass or superinterface.
Newly declared methods can hide, implement, or override methods declared in a
superclass or superinterface.

Field declarations (§8.3) describe class variables, which are incarnated once, and
instance variables, which are freshly incarnated for each instance of the class. A
field may be declared final (§8.3.1.2), in which case it can be assigned to only
once. Any field declaration may include an initializer.

Member class declarations (§8.5) describe nested classes that are members of the
surrounding class. Member classes may be static, in which case they have no
access to the instance variables of the surrounding class; or they may be inner
classes (§8.1.3).

Member interface declarations (§8.5) describe nested interfaces that are members
of the surrounding class.

Method declarations (§8.4) describe code that may be invoked by method
invocation expressions (§15.12). A class method is invoked relative to the class
type; an instance method is invoked with respect to some particular object that is
an instance of a class type. A method whose declaration does not indicate how
it is implemented must be declared abstract. A method may be declared final
(§8.4.3.3), in which case it cannot be hidden or overridden. A method may be
implemented by platform-dependent native code (§8.4.3.4). A synchronized
method (§8.4.3.6) automatically locks an object before executing its body and
automatically unlocks the object on return, as if by use of a synchronized
statement (§14.19), thus allowing its activities to be synchronized with those of
other threads (§17 (Threads and Locks)).

Method names may be overloaded (§8.4.9).

Instance initializers (§8.6) are blocks of executable code that may be used to help
initialize an instance when it is created (§15.9).

Static initializers (§8.7) are blocks of executable code that may be used to help
initialize a class.

Constructors (§8.8) are similar to methods, but cannot be invoked directly by a
method call; they are used to initialize new class instances. Like methods, they may
be overloaded (§8.8.8).
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8.1 Class Declarations

A class declaration specifies a new named reference type.

There are two kinds of class declarations: normal class declarations and enum
declarations.

ClassDeclaration:
NormalClassDeclaration
EnumDeclaration

NormalClassDeclaration:
{ClassModifier} class Identifier [TypeParameters]
[Superclass] [Superinterfaces] ClassBody

The rules in this section apply to all class declarations, including enum declarations.
However, special rules apply to enum declarations with regard to class modifiers,
inner classes, and superclasses; these rules are stated in §8.9.

The Identifier in a class declaration specifies the name of the class.

It is a compile-time error if a class has the same simple name as any of its enclosing
classes or interfaces.

The scope and shadowing of a class declaration is specified in §6.3 and §6.4.

8.1.1 Class Modifiers

A class declaration may include class modifiers.

ClassModifier:
(one of)

Annotation public protected private
abstract static final strictfp

The rules for annotation modifiers on a class declaration are specified in §9.7.4
and §9.7.5.

The access modifier public (§6.6) pertains only to top level classes (§7.6) and
member classes (§8.5), not to local classes (§14.3) or anonymous classes (§15.9.5).

The access modifiers protected and private pertain only to member classes
within a directly enclosing class declaration (§8.5).

8.1
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The modifier static pertains only to member classes (§8.5.1), not to top level or
local or anonymous classes.

It is a compile-time error if the same keyword appears more than once as a modifier
for a class declaration.

If two or more (distinct) class modifiers appear in a class declaration, then it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for ClassModifier.

8.1.1.1 abstract Classes
An abstract class is a class that is incomplete, or to be considered incomplete.

It is a compile-time error if an attempt is made to create an instance of an abstract
class using a class instance creation expression (§15.9.1).

A subclass of an abstract class that is not itself abstract may be instantiated,
resulting in the execution of a constructor for the abstract class and, therefore,
the execution of the field initializers for instance variables of that class.

A normal class may have abstract methods, that is, methods that are declared but
not yet implemented (§8.4.3.1), only if it is an abstract class. It is a compile-time
error if a normal class that is not abstract has an abstract method.

A class c has abstract methods if either of the following is true:

* Any of the member methods (§8.2) of ¢ - either declared or inherited - is
abstract.

* Any of C's superclasses has an abstract method declared with package access,
and there exists no method that overrides the abstract method from ¢ or from
a superclass of c.

It is a compile-time error to declare an abstract class type such that it is not
possible to create a subclass that implements all of its abstract methods. This
situation can occur if the class would have as members two abstract methods
that have the same method signature (§8.4.2) but return types for which no type is
return-type-substitutable with both (§8.4.5).

Example 8.1.1.1-1. Abstract Class Declaration

abstract class Point {
int x =1, vy = 1;
void move(int dx, int dy) {
x += dx;
y += dy;
alert();
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abstract void alert();

}

abstract class ColoredPoint extends Point {
int color;

}

class SimplePoint extends Point {
void alert() { }

Here, a class Point is declared that must be declared abstract, because it contains
a declaration of an abstract method named alert. The subclass of Point named
ColoredPoint inherits the abstract method alert, so it must also be declared
abstract. On the other hand, the subclass of Point named SimplePoint provides an
implementation of alert, so it need not be abstract.

The statement:
Point p = new Point();

would result in a compile-time error; the class Point cannot be instantiated because it is
abstract. However, a Point variable could correctly be initialized with a reference to
any subclass of Point, and the class SimplePoint is not abstract, so the statement:

Point p = new SimplePoint();

would be correct. Instantiation of a SimplePoint causes the default constructor and field
initializers for x and y of Point to be executed.

Example 8.1.1.1-2. Abstract Class Declaration that Prohibits Subclasses

interface Colorable {
void setColor(int color);

}

abstract class Colored implements Colorable {
public abstract int setColor(int color);

These declarations result in a compile-time error: it would be impossible for any subclass
of class Colored to provide an implementation of a method named setColor, taking one
argument of type int, that can satisfy both abstract method specifications, because the one
in interface Colorable requires the same method to return no value, while the one in class
Colored requires the same method to return a value of type int (§8.4).

A class type should be declared abstract only if the intent is that subclasses can be created
to complete the implementation. If the intent is simply to prevent instantiation of a class,
the proper way to express this is to declare a constructor (§8.8.10) of no arguments, make
it private, never invoke it, and declare no other constructors. A class of this form usually
contains class methods and variables.

The class Math is an example of a class that cannot be instantiated; its declaration looks
like this:
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public final class Math {
private Math() { } // never instantiate this class
. declarations of class variables and methods . . .

8.1.1.2 final Classes

A class can be declared final if its definition is complete and no subclasses are
desired or required.

It is a compile-time error if the name of a £inal class appears in the extends clause
(§8.1.4) of another class declaration; this implies that a £inal class cannot have
any subclasses.

It is a compile-time error if a class is declared both £inal and abstract, because
the implementation of such a class could never be completed (§8.1.1.1).

Because a final class never has any subclasses, the methods of a final class are
never overridden (§8.4.8.1).

8.1.1.3 strictfp Classes

The effect of the strictfp modifier is to make all £loat or double expressions
within the class declaration (including within variable initializers, instance
initializers, static initializers, and constructors) be explicitly FP-strict (§15.4).

This implies that all methods declared in the class, and all nested types declared in
the class, are implicitly strictfp.

8.1.2 Generic Classes and Type Parameters

A class is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the class. The type
parameter section follows the class name and is delimited by angle brackets.

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter {, TypeParameter}

The following productions from §4.4 are shown here for convenience:

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]
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TypeParameterModifier:
Annotation

TypeBound.:
extends TypeVariable
extends ClassOrlInterfaceType { AdditionalBound}

AdditionalBound.:
& InterfaceType

The rules for annotation modifiers on a type parameter declaration are specified
in §9.7.4 and §9.7.5.

In a class's type parameter section, a type variable T directly depends on a type
variable s if sis the bound of T, while T depends on s if either T directly depends on
s or T directly depends on a type variable U that depends on s (using this definition
recursively). It is a compile-time error if a type variable in a class's type parameter
section depends on itself.

The scope and shadowing of a class's type parameter is specified in §6.3 and §6.4.

A generic class declaration defines a set of parameterized types (§4.5), one for each
possible parameterization of the type parameter section by type arguments. All of
these parameterized types share the same class at run time.

For instance, executing the code:

Vector<String> =x = new Vector<String>();
Vector<Integer> y = new Vector<Integer>();
boolean b = x.getClass() == y.getClass();

will result in the variable b holding the value true.

It is a compile-time error if a generic class is a direct or indirect subclass of
Throwable (§11.1.1).

This restriction is needed since the catch mechanism of the Java Virtual Machine works
only with non-generic classes.

It is a compile-time error to refer to a type parameter of a generic class ¢ in any
of the following:

e the declaration of a static member of ¢ (§8.3.1.1, §8.4.3.2, §8.5.1).

* the declaration of a static member of any type declaration nested within c.

e a static initializer of ¢ (§8.7), or

* a static initializer of any class declaration nested within c.
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Example 8.1.2-1. Mutually Recursive Type Variable Bounds

interface ConvertibleTo<T> {
T convert();
}
class ReprChange<T extends ConvertibleTo<S>,
S extends ConvertibleTo<T>> {

T t;
void set(S s) { t = s.convert(); }
S get() { return t.convert(); }

Example 8.1.2-2. Nested Generic Classes

class Seg<T> {
T head;
Seg<T> tail;

Seqg() { this(null, null); }

Seq(T head, Seqg<T> tail) {
this.head = head;
this.tail = tail;

}

boolean isEmpty() { return tail == null; }

class Zipper<S> {
Seq<Pair<T,S>> zip(Seq<S> that) {

if (isEmpty() || that.isEmpty()) {
return new Seqg<Pair<T,S>>();
} else {

Seq<T>.Zipper<S> tailZipper =
tail.new Zipper<S>();

return new Seq<Pair<T,S>>(
new Pair<T,S>(head, that.head),
tailZipper.zip(that.tail));

}
class Pair<T, S> {
T fst; S snd;
Pair(T £, S s) { fst = £f; snd = s; }
}
class Test {
public static void main(String[] args) {
Seg<String> strs =
new Seg<String>(
"ar,
new Seg<String>("b",
new Seg<String>()));
Seg<Number> nums =
new Seg<Number>(
new Integer(1l),
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new Seg<Number>(new Double(l.5),
new Seg<Number>()));

Seqg<String>.Zipper<Number> zipper =
strs.new Zipper<Number>();

Seqg<Pair<String,Number>> combined
zipper.zip(nums);

8.1.3 Inner Classes and Enclosing Instances

An inner class is a nested class that is not explicitly or implicitly declared static.

An inner class may be a non-static member class (§8.5), a local class (§14.3), or
an anonymous class (§15.9.5). A member class of an interface is implicitly static
(§9.5) so is never considered to be an inner class.

It is a compile-time error if an inner class declares a static initializer (§8.7).

It is a compile-time error if an inner class declares a member that is explicitly or
implicitly static, unless the member is a constant variable (§4.12.4).

An inner class may inherit static members that are not constant variables even
though it cannot declare them.

A nested class that is not an inner class may declare static members freely, in
accordance with the usual rules of the Java programming language.

Example 8.1.3-1. Inner Class Declarations and Static Members

class HasStatic {
static int j = 100;
}
class Outer {
class Inner extends HasStatic {
static final int x = 3; // OK: constant variable
static int y = 4; // Compile-time error: an inner class
}
static class NestedButNotInner({
static int z = 5; // OK: not an inner class

}

interface NeverInner {} // Interfaces are never inner

A statement or expression occurs in a static context if and only if the innermost
method, constructor, instance initializer, static initializer, field initializer, or
explicit constructor invocation statement enclosing the statement or expression is

8.1
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a static method, a static initializer, the variable initializer of a static variable, or an
explicit constructor invocation statement (§8.8.7.1).

Aninner class cis a direct inner class of a class or interface oif ois the immediately
enclosing type declaration of ¢ and the declaration of ¢ does not occur in a static
context.

A class c is an inner class of class or interface o if it is either a direct inner class
of o or an inner class of an inner class of o.

It is unusual, but possible, for the immediately enclosing type declaration of an inner class
to be an interface. This only occurs if the class is declared in a default method body (§9.4).
Specifically, it occurs if an anonymous or local class is declared in a default method body,
or a member class is declared in the body of an anonymous class that is declared in a default
method body.

A class or interface o is the zeroth lexically enclosing type declaration of itself.

A class o is the n'th lexically enclosing type declaration of a class c if it is
the immediately enclosing type declaration of the n-/'th lexically enclosing type
declaration of c.

An instance i of a direct inner class c of a class or interface o is associated with an
instance of o, known as the immediately enclosing instance of i. The immediately
enclosing instance of an object, if any, is determined when the object is created
(§15.9.2).

An object o is the zeroth lexically enclosing instance of itself.

An object o is the n'th lexically enclosing instance of an instance i if it is the
immediately enclosing instance of the n-1'th lexically enclosing instance of i.

An instance of an inner class 1 whose declaration occurs in a static context has
no lexically enclosing instances. However, if 1 is immediately declared within a
static method or static initializer then 1 does have an enclosing block, which is the
innermost block statement lexically enclosing the declaration of .

For every superclass s of ¢ which is itself a direct inner class of a class or interface
5o, there is an instance of so associated with i, known as the immediately enclosing
instance of i with respect to s. The immediately enclosing instance of an object
with respect to its class' direct superclass, if any, is determined when the superclass
constructor is invoked via an explicit constructor invocation statement (§8.8.7.1).

When an inner class (whose declaration does not occur in a static context) refers to
an instance variable that is a member of a lexically enclosing type declaration, the
variable of the corresponding lexically enclosing instance is used.
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Any local variable, formal parameter, or exception parameter used but not declared
in an inner class must either be declared £inal or be effectively final (§4.12.4), or
a compile-time error occurs where the use is attempted.

Any local variable used but not declared in an inner class must be definitely
assigned (§16 (Definite Assignment)) before the body of the inner class, or a
compile-time error occurs.

Similar rules on variable use apply in the body of a lambda expression (§15.27.2).

A blank final field (§4.12.4) of a lexically enclosing type declaration may not be
assigned within an inner class, or a compile-time error occurs.

Example 8.1.3-2. Inner Class Declarations

class Outer {
int i = 100;
static void classMethod() {
final int 1 = 200;
class LocallInStaticContext {
int k = i; // Compile-time error
int m = 1; // OK
}
}
void foo() {
class Local
int j = i;

// A local class

-~

The declaration of class LocalInStaticContext occurs in a static context due to being
within the static method classMethod. Instance variables of class Outer are not available
within the body of a static method. In particular, instance variables of Oouter are not
available inside the body of LocalInStaticContext. However, local variables from the
surrounding method may be referred to without error (provided they are marked £inal).

Inner classes whose declarations do not occur in a static context may freely refer to the
instance variables of their enclosing type declaration. An instance variable is always defined
with respect to an instance. In the case of instance variables of an enclosing type declaration,
the instance variable must be defined with respect to an enclosing instance of that declared
type. For example, the class Local above has an enclosing instance of class Outer. As a
further example:

class WithDeepNesting {
boolean toBe;
WithDeepNesting(boolean b) { toBe = b; }

class Nested {
boolean theQuestion;

8.1
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class DeeplyNested {
DeeplyNested(){
theQuestion = toBe || !toBe;

}

}

Here, every instance of WithDeepNesting.Nested.DeeplyNested has an enclosing
instance of class WithDeepNesting.Nested (its immediately enclosing instance) and an
enclosing instance of class withDeepNesting (its 2nd lexically enclosing instance).

8.1.4 Superclasses and Subclasses

The optional extends clause in a normal class declaration specifies the direct
superclass of the current class.

Superclass:
extends ClassType

The extends clause must not appear in the definition of the class object, or a
compile-time error occurs, because it is the primordial class and has no direct
superclass.

The ClassType must name an accessible class type (§6.6), or a compile-time error
occurs.

It is a compile-time error if the ClassType names a class that is f£inal, because
final classes are not allowed to have subclasses (§8.1.1.2).

It is a compile-time error if the ClassType names the class Enum or any invocation
of Enum (§8.9).

If the ClassType has type arguments, it must denote a well-formed parameterized
type (§4.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

Given a (possibly generic) class declaration c<F;,...,F,> (n = 0, C # Object), the
direct superclass of the class type c<rFi,...,F> is the type given in the extends
clause of the declaration of cif an extends clause is present, or object otherwise.

Given a generic class declaration c<Fy,...,F,> (n > 0), the direct superclass of the
parameterized class type c<Ty,...,T>, Where T; (1 =i < n) is a type, is b<v; 0,...,Ux
0>, where p<uy,...,Us> is the direct superclass of c<F;,...,F,> and 0 is the substitution
[F1:=Tq, ..., Fn:=Tp].
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A class is said to be a direct subclass of its direct superclass. The direct superclass
is the class from whose implementation the implementation of the current class is
derived.

The subclass relationship is the transitive closure of the direct subclass relationship.
A class ais a subclass of class c if either of the following is true:

e ais the direct subclass of ¢
¢ There exists a class B such that a is a subclass of B, and B is a subclass of ¢,
applying this definition recursively.

Class cis said to be a superclass of class a whenever 4 is a subclass of c.

Example 8.1.4-1. Direct Superclasses and Subclasses

class Point { int x, y; }
final class ColoredPoint extends Point { int color; }
class Colored3DPoint extends ColoredPoint { int z; } // error

Here, the relationships are as follows:

e The class Point is a direct subclass of Object.

* The class Object is the direct superclass of the class Point.

e The class ColoredPoint is a direct subclass of class Point.

* The class Point is the direct superclass of class ColoredPoint.

The declaration of class Colored3dPoint causes a compile-time error because it attempts
to extend the final class ColoredPoint.

Example 8.1.4-2. Superclasses and Subclasses

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
final class Colored3dPoint extends ColoredPoint { int z; }

Here, the relationships are as follows:

* The class Point is a superclass of class ColoredPoint.

e The class Point is a superclass of class Colored3dpPoint.

e The class ColoredPoint is a subclass of class Point.

* The class ColoredPoint is a superclass of class Colored3dPoint.
e The class Colored3dPoint is a subclass of class ColoredpPoint.

¢ The class Colored3dPoint is a subclass of class Point.
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A class c directly depends on a type T if T is mentioned in the extends or
implements clause of c either as a superclass or superinterface, or as a qualifier in
the fully qualified form of a superclass or superinterface name.

A class ¢ depends on a reference type T if any of the following is true:
» cdirectly depends on T.
» cdirectly depends on an interface 1 that depends (§9.1.3) on T.

e ¢ directly depends on a class p that depends on T (using this definition
recursively).

It is a compile-time error if a class depends on itself.

If circularly declared classes are detected at run time, as classes are loaded, then a
ClassCircularityError is thrown (§12.2.1).

Example 8.1.4-3. Class Depends on Itself

class Point extends ColoredPoint { int x, y; }
class ColoredPoint extends Point { int color; }

This program causes a compile-time error because class Point depends on itself.

8.1.5 Superinterfaces

The optional implements clause in a class declaration lists the names of interfaces
that are direct superinterfaces of the class being declared.

Superinterfaces:
implements InterfaceTypelList

InterfaceTypelList:
InterfaceType {, InterfaceType}

Each InterfaceType must name an accessible interface type (§6.6), or a compile-
time error occurs.

If an InterfaceType has type arguments, it must denote a well-formed parameterized
type (§4.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

It is a compile-time error if the same interface is mentioned as a direct
superinterface more than once in a single implements clause. This is true even if
the interface is named in different ways.
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Example 8.1.5-1. Illegal Superinterfaces

class Redundant implements java.lang.Cloneable, Cloneable {
int x;

}

This program results in a compile-time error because the names java.lang.Cloneable
and Cloneable refer to the same interface.

Given a (possibly generic) class declaration c<F;,...,F,> (n = 0, C # Object), the
direct superinterfaces of the class type c<r;,...,F,> are the types given in the
implements clause of the declaration of c, if an implements clause is present.

Given a generic class declaration c<F;,...,F,> (n > 0), the direct superinterfaces of
the parameterized class type c<T;,...,Tn>, Where T; (1 =i =< n) is a type, are all types
1<U; 0,...,Ux 0>, where 1<Ujy,...,Uy> is a direct superinterface of c<Fy,...,F,> and 0 is
the substitution [F;:=T;, ..., Fp:=Ty].

An interface type 1 is a superinterface of class type cif any of the following is true:
* 1is adirect superinterface of c.

* ¢ has some direct superinterface J for which 1 is a superinterface, using the
definition of "superinterface of an interface" given in §9.1.3.

* 1is a superinterface of the direct superclass of c.
A class can have a superinterface in more than one way.
A class is said to implement all its superinterfaces.

A class may not at the same time be a subtype of two interface types which are
different parameterizations of the same generic interface (§9.1.2), or a subtype of
a parameterization of a generic interface and a raw type naming that same generic
interface, or a compile-time error occurs.

This requirement was introduced in order to support translation by type erasure (§4.6).

Example 8.1.5-2. Superinterfaces

interface Colorable {
void setColor(int color);
int getColor();

}

enum Finish { MATTE, GLOSSY }

interface Paintable extends Colorable {
void setFinish(Finish finish);
Finish getFinish();
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class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {
int color;
public void setColor(int color) { this.color = color; }
public int getColor() { return color; }

}

CLASSES

class PaintedPoint extends ColoredPoint implements Paintable {

Finish finish;

public void setFinish(Finish finish) {
this.finish = finish;

}

public Finish getFinish() { return finish; }

Here, the relationships are as follows:

» The interface Paintable is a superinterface of class PaintedPoint.

* The interface Colorable is a superinterface of class ColoredpPoint and of class

PaintedPoint.

¢ The interface Paintable is a subinterface of the interface Colorable, and Colorable

is a superinterface of Paintable, as defined in §9.1.3.

The class PaintedPoint has Colorable as a superinterface both because it is a

superinterface of ColoredPoint and because it is a superinterface of Paintable.

Example 8.1.5-3. Illegal Multiple Inheritance of an Interface

interface I<T> {}
class B implements I<Integer> {}
class C extends B implements I<String> {}

Class c causes a compile-time error because it attempts to be a subtype of both I<Integer>

and I<String>.

Unless the class being declared is abstract, all the abstract member methods of
each direct superinterface must be implemented (§8.4.8.1) either by a declaration in
this class or by an existing method declaration inherited from the direct superclass
or a direct superinterface, because a class that is not abstract is not permitted to

have abstract methods (§8.1.1.1).

Each default method (§9.4.3) of a superinterface of the class may optionally be
overridden by a method in the class; if not, the default method is typically inherited

and its behavior is as specified by its default body.

It is permitted for a single method declaration in a class to implement methods of

more than one superinterface.
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Example 8.1.5-3. Implementing Methods of a Superinterface

interface Colorable {
void setColor(int color);
int getColor();

}

class Point { int x, y; };

class ColoredPoint extends Point implements Colorable {
int color;

}

This program causes a compile-time error, because ColoredPoint is not an abstract
class but fails to provide an implementation of methods setColor and getColor of the
interface Colorable.

In the following program:

interface Fish { int getNumberOfScales(); }
interface Piano { int getNumberOfScales(); }
class Tuna implements Fish, Piano {
// You can tune a piano, but can you tuna fish?
public int getNumberOfScales() { return 91; }

the method getNumberOfScales in class Tuna has a name, signature, and return type that
matches the method declared in interface Fish and also matches the method declared in
interface Piano; it is considered to implement both.

On the other hand, in a situation such as this:

interface Fish { int getNumberOfScales(); }
interface StringBass { double getNumberOfScales(); }
class Bass implements Fish, StringBass {

// This declaration cannot be correct,

// no matter what type is used.

public ?? getNumberOfScales() { return 91; }

it is impossible to declare a method named getNumberOfScales whose signature and
return type are compatible with those of both the methods declared in interface Fish and
in interface StringBass, because a class cannot have multiple methods with the same
signature and different primitive return types (§8.4). Therefore, it is impossible for a single
class to implement both interface Fish and interface StringBass (§8.4.8).

8.1.6 Class Body and Member Declarations

A class body may contain declarations of members of the class, that is, fields (§8.3),
methods (§8.4), classes (§8.5), and interfaces (§8.5).
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A class body may also contain instance initializers (§8.6), static initializers (§8.7),
and declarations of constructors (§8.8) for the class.

ClassBody:
{ {ClassBodyDeclaration} }

ClassBodyDeclaration:
ClassMemberDeclaration
Instancelnitializer
StaticInitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

.
r

The scope and shadowing of a declaration of a member m declared in or inherited
by a class type c is specified in §6.3 and §6.4.

If citself is a nested class, there may be definitions of the same kind (variable, method, or
type) and name as min enclosing scopes. (The scopes may be blocks, classes, or packages.)
In all such cases, the member m declared in or inherited by ¢ shadows (§6.4.1) the other
definitions of the same kind and name.

8.2 Class Members

The members of a class type are all of the following:

* Members inherited from its direct superclass (§8.1.4), except in class object,
which has no direct superclass

* Members inherited from any direct superinterfaces (§8.1.5)
* Members declared in the body of the class (§8.1.6)

Members of a class that are declared private are not inherited by subclasses of
that class.

Only members of a class that are declared protected or public are inherited by
subclasses declared in a package other than the one in which the class is declared.
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Constructors, static initializers, and instance initializers are not members and
therefore are not inherited.

We use the phrase the type of a member to denote:
* For a field, its type.
* For a method, an ordered 4-tuple consisting of:

— type parameters: the declarations of any type parameters of the method
member.

— argument types: a list of the types of the arguments to the method member.
— return type: the return type of the method member.

— throws clause: exception types declared in the throws clause of the method
member.

Fields, methods, and member types of a class type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (§6.5). However, this is discouraged as a matter of style.

Example 8.2-1. Use of Class Members

class Point {
int x, y;
private Point() { reset(); }
Point(int x, int y) { this.x = x; this.y = y; }
private void reset() { this.x = 0; this.y = 0; }
}
class ColoredPoint extends Point {
int color;
void clear() { reset(); } // error
}
class Test {
public static void main(String[] args) {
ColoredPoint ¢ = new ColoredPoint(0, 0); // error
c.reset(); // error

}
This program causes four compile-time errors.
One error occurs because ColoredPoint has no constructor declared with two int
parameters, as requested by the use in main. This illustrates the fact that ColoredPoint
does not inherit the constructors of its superclass Point.
Another error occurs because ColoredPoint declares no constructors, and therefore a

default constructor for it is implicitly declared (§8.8.9), and this default constructor is
equivalent to:
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ColoredPoint() { super(); }

which invokes the constructor, with no arguments, for the direct superclass of the class
ColoredPoint. The error is that the constructor for Point that takes no arguments is
private,and therefore is not accessible outside the class Point, even through a superclass
constructor invocation (§8.8.7).

Two more errors occur because the method reset of class Point is private, and therefore
is not inherited by class ColoredPoint. The method invocations in method clear of class
ColoredPoint and in method main of class Test are therefore not correct.

Example 8.2-2. Inheritance of Class Members with Package Access

Consider the example where the points package declares two compilation units:

package points;
public class Point {
int x, y;
public void move(int dx, int dy) { x += dx; y += dy; }

and:

package points;
public class Point3d extends Point {
int z;
public void move(int dx, int dy, int dz) {
x += dx; y += dy; z += dz;

and a third compilation unit, in another package, is:

import points.Point3d;
class Point4d extends Point3d {
int w;
public void move(int dx, int dy, int dz, int dw) {
X += dx; y += dy; 2z += dz; w += dw; // compile-time errors

Here both classes in the points package compile. The class Point3d inherits the fields
x and y of class Point, because it is in the same package as Point. The class Point4d,
which is in a different package, does not inherit the fields x and y of class Point or the
field z of class Point3d, and so fails to compile.

A better way to write the third compilation unit would be:

import points.Point3d;
class Point4d extends Point3d {
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int w;
public void move(int dx, int dy, int dz, int dw) {
super.move(dx, dy, dz); w += dw;

using the move method of the superclass Point3d to process dx, dy, and dz. If Point4d
is written in this way, it will compile without errors.

Example 8.2-3. Inheritance of public and protected Class Members

Given the class Point:

package points;
public class Point {
public int x, y;
protected int useCount = 0;
static protected int totalUseCount = 0;
public void move(int dx, int dy) {
x += dx; y += dy; useCount++; totalUseCount++;

the public and protected fields x, y, useCount, and totalUseCount are inherited in
all subclasses of Point.

Therefore, this test program, in another package, can be compiled successfully:

class Test extends points.Point {
public void moveBack(int dx, int dy) {
X -= dx; y -= dy; useCount++; totalUseCount++;

Example 8.2-4. Inheritance of private Class Members

class Point {
int x, y;
void move(int dx, int dy) {
x += dx; y += dy; totalMoves++;
}
private static int totalMoves;
void printMoves() { System.out.println(totalMoves); }

}
class Point3d extends Point {
int z;
void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz; totalMoves++; // error
}
}
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Here, the class variable totalMoves can be used only within the class Point; it is not
inherited by the subclass Point3d. A compile-time error occurs because method move of
class Point3d tries to increment totalMoves.

Example 8.2-5. Accessing Members of Inaccessible Classes

Even though a class might not be declared public, instances of the class might be available
at run time to code outside the package in which it is declared by means of a public
superclass or superinterface. An instance of the class can be assigned to a variable of such a
public type. Aninvocation of a public method of the object referred to by such a variable
may invoke a method of the class if it implements or overrides a method of the public
superclass or superinterface. (In this situation, the method is necessarily declared public,
even though it is declared in a class that is not public.)

Consider the compilation unit:

package points;
public class Point {
public int x, y;
public void move(int dx, int dy) {
X += dx; y += dy;

and another compilation unit of another package:

package morePoints;
class Point3d extends points.Point {
public int z;
public void move(int dx, int dy, int dz) {
super.move(dx, dy); z += dz;
}
public void move(int dx, int dy) {
move(dx, dy, 0);
}
}
public class OnePoint {
public static points.Point getOne() {
return new Point3d();

An invocation morePoints.OnePoint.getOne() in yet a third package would return
a Point3d that can be used as a Point, even though the type Point3d is not available
outside the package morePoints. The two-argument version of method move could then be
invoked for that object, which is permissible because method move of Point3d is public
(as it must be, for any method that overrides a public method must itself be public,
precisely so that situations such as this will work out correctly). The fields x and y of that
object could also be accessed from such a third package.
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While the field z of class Point3d is public,itis not possible to access this field from code
outside the package morePoints, given only a reference to an instance of class Point3d
in a variable p of type Point. This is because the expression p. z is not correct, as p has
type Point and class Point has no field named z; also, the expression ( (Point3d)p).z
is not correct, because the class type Point3d cannot be referred to outside package
morePoints.

The declaration of the field z as public is not useless, however. If there were to be, in
package morePoints, a public subclass Point4d of the class Point3d:

package morePoints;
public class Point4d extends Point3d {
public int w;
public void move(int dx, int dy, int dz, int dw) {
super.move(dx, dy, dz); w += dw;
}
}

then class Point4d would inherit the field z, which, being public, could then be accessed
by code in packages other than morePoints, through variables and expressions of the
public type Point4d.

8.3 Field Declarations

The variables of a class type are introduced by field declarations.

FieldDeclaration:
{FieldModifier} UnannType VariableDeclaratorList ;

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorld [= Variablelnitializer]

VariableDeclaratorld:
Identifier [Dims]

Variablelnitializer:
Expression
Arraylnitializer

8.3

213



8.3

214

Field Declarations CLASSES

UnannType:
UnannPrimitiveType
UnannReferenceType

UnannPrimitiveType:
NumericType

boolean

UnannReferenceType:
UnannClassOrlInterfaceType
UnannTypeVariable
UnannArrayType

UnannClassOrlInterfaceType:
UnannClassType
UnannlinterfaceType

UnannClassType:
Identifier [TypeArguments]
UnannClassOrlInterfaceType . {Annotation} ldentifier [TypeArguments]

UnannlinterfaceType:
UnannClassType

UnannTypeVariable:
Identifier

UnannArrayType:
UnannPrimitiveType Dims
UnannClassOrlInterfaceType Dims
UnannTypeVariable Dims

The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [ ] {{Annotation} [ 1}

Each declarator in a FieldDeclaration declares one field. The Identifier in a
declarator may be used in a name to refer to the field.

More than one field may be declared in a single FieldDeclaration by using more
than one declarator; the FieldModifiers and UnannType apply to all the declarators
in the declaration.
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The FieldModifier clause is described in §8.3.1.

The declared type of a field is denoted by UnannType if no bracket pairs appear in
UnannType and VariableDeclaratorld, and is specified by §10.2 otherwise.

The scope and shadowing of a field declaration is specified in §6.3 and §6 4.

It is a compile-time error for the body of a class declaration to declare two fields
with the same name.

If the class declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same name in
superclasses, and superinterfaces of the class.

In this respect, hiding of fields differs from hiding of methods (§8.4.8.3), for there is
no distinction drawn between static and non-static fields in field hiding whereas a
distinction is drawn between static and non-static methods in method hiding.

A hidden field can be accessed by using a qualified name (§6.5.6.2) if itis static,
or by using a field access expression that contains the keyword super (§15.11.2)
or a cast to a superclass type.

In this respect, hiding of fields is similar to hiding of methods.

If a field declaration hides the declaration of another field, the two fields need not
have the same type.

A class inherits from its direct superclass and direct superinterfaces all the non-
private fields of the superclass and superinterfaces that are both accessible to code
in the class and not hidden by a declaration in the class.

A private field of a superclass might be accessible to a subclass - for example, if
both classes are members of the same class. Nevertheless, a private field is never
inherited by a subclass.

It is possible for a class to inherit more than one field with the same name. Such a
situation does not in itself cause a compile-time error. However, any attempt within
the body of the class to refer to any such field by its simple name will result in a
compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be inherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

A value stored in a field of type float is always an element of the float value set
(§4.2.3); similarly, a value stored in a field of type double is always an element
of the double value set. It is not permitted for a field of type £loat to contain an

8.3
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element of the float-extended-exponent value set that is not also an element of the
float value set, nor for a field of type double to contain an element of the double-
extended-exponent value set that is not also an element of the double value set.

Example 8.3-1. Multiply Inherited Fields

A class may inherit two or more fields with the same name, either from two interfaces or
from its superclass and an interface. A compile-time error occurs on any attempt to refer
to any ambiguously inherited field by its simple name. A qualified name or a field access
expression that contains the keyword super (§15.11.2) may be used to access such fields
unambiguously. In the program:

interface Frob { float v = 2.0f; }
class SuperTest { int v =3;}
class Test extends SuperTest implements Frob {
public static void main(String[] args) {
new Test().printv();
}
void printv() { System.out.println(v); }

the class Test inherits two fields named v, one from its superclass SuperTest and one
from its superinterface Frob. This in itself is permitted, but a compile-time error occurs
because of the use of the simple name v in method printv: it cannot be determined which
v is intended.

The following variation uses the field access expression super . v to refer to the field named
v declared in class SuperTest and uses the qualified name Frob.v to refer to the field
named v declared in interface Frob:

interface Frob { float v = 2.0f; }
class SuperTest { int v =3;}
class Test extends SuperTest implements Frob {
public static void main(String[] args) {
new Test().printv();
}
void printv() {
System.out.println((super.v + Frob.v)/2);
}

It compiles and prints:
2.5

Even if two distinct inherited fields have the same type, the same value, and are both
final, any reference to either field by simple name is considered ambiguous and results
in a compile-time error. In the program:

interface Color { int RED=0, GREEN=1, BLUE=2; }
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interface TrafficLight { int RED=0, YELLOW=1, GREEN=2; }
class Test implements Color, TrafficLight {
public static void main(String[] args) {
System.out.println(GREEN); // compile-time error
System.out.println(RED); // compile-time error

it is not astonishing that the reference to GREEN should be considered ambiguous, because
class Test inherits two different declarations for GREEN with different values. The point of
this example is that the reference to RED is also considered ambiguous, because two distinct
declarations are inherited. The fact that the two fields named RED happen to have the same
type and the same unchanging value does not affect this judgment.

Example 8.3-2. Re-inheritance of Fields

If the same field declaration is inherited from an interface by multiple paths, the field is
considered to be inherited only once. It may be referred to by its simple name without
ambiguity. For example, in the code:

interface Colorable {
int RED = 0xff0000, GREEN = 0x00£ff00, BLUE = 0x0000ff;
}

interface Paintable extends Colorable {
int MATTE = 0, GLOSSY = 1;

}

class Point { int x, y; }

class ColoredPoint extends Point implements Colorable {}

class PaintedPoint extends ColoredPoint implements Paintable {
int p = RED;

}

the fields RED, GREEN, and BLUE are inherited by the class PaintedPoint both through
its direct superclass ColoredPoint and through its direct superinterface Paintable. The
simple names RED, GREEN, and BLUE may nevertheless be used without ambiguity within
the class PaintedPoint to refer to the fields declared in interface Colorable.

8.3.1 Field Modifiers

FieldModifier:
(one of)

Annotation public protected private
static final transient volatile

The rules for annotation modifiers on a field declaration are specified in §9.7.4 and
§9.7.5.
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It is a compile-time error if the same keyword appears more than once as a modifier
for a field declaration.

If two or more (distinct) field modifiers appear in a field declaration, it is customary, though
not required, that they appear in the order consistent with that shown above in the production
for FieldModifier.

8.3.1.1 static Fields

If a field is declared static, there exists exactly one incarnation of the field, no
matter how many instances (possibly zero) of the class may eventually be created.
A static field, sometimes called a class variable, is incarnated when the class is
initialized (§12.4).

A field that is not declared static (sometimes called a non-static field) is called
an instance variable. Whenever a new instance of a class is created (§12.5), a new
variable associated with that instance is created for every instance variable declared
in that class or any of its superclasses.

Example 8.3.1.1-1. static Fields

class Point {
int x, y, useCount;
Point(int x, int y) { this.x = x; this.y = y; }
static final Point origin = new Point(0, 0);

}
class Test {
public static void main(String[] args) {

Point p = new Point(1l,1);
Point g = new Point(2,2);
p.x = 3;
p.y = 3;
p.useCount++;
p.origin.useCount++;
System.out.println("(" + g.x + "," + g.y + ")");
System.out.println(g.useCount);
System.out.println(g.origin == Point.origin);
System.out.println(g.origin.useCount);

This program prints:

(2,2)
0
true
1
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showing that changing the fields x, y, and useCount of p does not affect the fields of q,
because these fields are instance variables in distinct objects. In this example, the class
variable origin of the class Point is referenced both using the class name as a qualifier, in
Point.origin, and using variables of the class type in field access expressions (§15.11),
as in p.origin and g.origin. These two ways of accessing the origin class variable
access the same object, evidenced by the fact that the value of the reference equality
expression (§15.21.3):

g.origin==Point.origin
is true. Further evidence is that the incrementation:
p.origin.useCount++;

causes the value of g.origin.useCount to be 1; this is so because p.origin and
q.origin refer to the same variable.

Example 8.3.1.1-2. Hiding of Class Variables

class Point {
static int x = 2;
}
class Test extends Point {
static double x = 4.7;
public static void main(String[] args) {
new Test().printX();

}
void printX() {

System.out.println(x + " " + super.x);
}

This program produces the output:
4.7 2

because the declaration of x in class Test hides the definition of x in class Point, so class
Test does not inherit the field x from its superclass Point. Within the declaration of class
Test, the simple name x refers to the field declared within class Test. Code in class Test
may refer to the field x of class Point as super.x (or, because x is static, as Point.x).
If the declaration of Test.x is deleted:

class Point {
static int x = 2;
}
class Test extends Point {
public static void main(String[] args) {
new Test().printX();
}
void printX() {
System.out.println(x + " " + super.x);

8.3
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then the field x of class Point is no longer hidden within class Test; instead, the simple
name x now refers to the field Point.x. Code in class Test may still refer to that same
field as super . x. Therefore, the output from this variant program is:

2 2
Example 8.3.1.1-3. Hiding of Instance Variables

class Point {
int x = 2;
}
class Test extends Point {
double x = 4.7;
void printBoth() {
System.out.println(x + " " + super.x);
}
public static void main(String[] args) {
Test sample = new Test();
sample.printBoth();
System.out.println(sample.x +

+ ((Point)sample).x);

This program produces the output:

because the declaration of x in class Test hides the definition of x in class Point, so class
Test does not inherit the field x from its superclass Point. It must be noted, however,
that while the field x of class Point is not inherited by class Test, it is nevertheless
implemented by instances of class Test. In other words, every instance of class Test
contains two fields, one of type int and one of type double. Both fields bear the name
x, but within the declaration of class Test, the simple name x always refers to the field
declared within class Test. Code in instance methods of class Test may refer to the
instance variable x of class Point as super.x.

Code that uses a field access expression to access field x will access the field named x
in the class indicated by the type of reference expression. Thus, the expression sample.x
accesses a double value, the instance variable declared in class Test, because the type of
the variable sample is Test, but the expression ( (Point)sample).x accesses an int
value, the instance variable declared in class Point, because of the cast to type Point.

If the declaration of x is deleted from class Test, as in the program:
class Point {
static int x = 2;

}

class Test extends Point {
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void printBoth() {
System.out.println(x + " " + super.x);

}
public static void main(String[] args) {
Test sample = new Test();

sample.printBoth();
System.out.println(sample.x +

+ ((Point)sample).x);
}

then the field x of class Point is no longer hidden within class Test. Within instance
methods in the declaration of class Test, the simple name x now refers to the field declared
within class Point. Code in class Test may still refer to that same field as super.x. The
expression sample.x still refers to the field x within type Test, but that field is now an
inherited field, and so refers to the field x declared in class Point. The output from this
variant program is:

2 2
2 2

8.3.1.2 final Fields

A field can be declared final (§4.12.4). Both class and instance variables (static
and non-static fields) may be declared final.

A blank final class variable must be definitely assigned by a static initializer of
the class in which it is declared, or a compile-time error occurs (§8.7, §16.8).

A blank final instance variable must be definitely assigned at the end of every
constructor of the class in which it is declared, or a compile-time error occurs (§8.8,
§16.9).

8.3.1.3 transient Fields
Variables may be marked transient to indicate that they are not part of the

persistent state of an object.

Example 8.3.1.3-1. Persistence of transient Fields

If an instance of the class Point:

class Point {
int x, y;
transient float rho, theta;

}

were saved to persistent storage by a system service, then only the fields x and y would be
saved. This specification does not specify details of such services; see the specification of
java.io.Serializable for an example of such a service.

8.3
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8.3.14 volatile Fields

The Java programming language allows threads to access shared variables (§17.1).
As a rule, to ensure that shared variables are consistently and reliably updated, a
thread should ensure that it has exclusive use of such variables by obtaining a lock
that, conventionally, enforces mutual exclusion for those shared variables.

The Java programming language provides a second mechanism, volatile fields,
that is more convenient than locking for some purposes.

A field may be declared volatile, in which case the Java Memory Model ensures
that all threads see a consistent value for the variable (§17.4).

It is a compile-time error if a £inal variable is also declared volatile.

Example 8.3.14-1. volatile Fields

If, in the following example, one thread repeatedly calls the method one (but no more than
Integer .MAX_VALUE times in all), and another thread repeatedly calls the method two:

class Test {
static int i = 0, j = 0;
static void one() { i++; J++; }
static void two() {
System.out.println("i=" + i + " =" + j);
}
}

then method two could occasionally print a value for j that is greater than the value of i,
because the example includes no synchronization and, under the rules explained in §17 4,
the shared values of i and j might be updated out of order.

One way to prevent this out-or-order behavior would be to declare methods one and two
to be synchronized (§8.4.3.6):

class Test {
static int i = 0, j = 0;
static synchronized void one() { i++; j++; }
static synchronized void two() {
System.out.println("i=" + i + " j=" + j);
}
}

This prevents method one and method two from being executed concurrently, and
furthermore guarantees that the shared values of i and j are both updated before method
one returns. Therefore method two never observes a value for j greater than that for i;
indeed, it always observes the same value for i and j.

Another approach would be to declare i and j to be volatile:
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class Test {
static volatile int i = 0, j = 0;
static void one() { i++; j++; }
static void two() {
System.out.println("i=" + i + " j=" + j);
}
}

This allows method one and method two to be executed concurrently, but guarantees that
accesses to the shared values for i and j occur exactly as many times, and in exactly the
same order, as they appear to occur during execution of the program text by each thread.
Therefore, the shared value for j is never greater than that for i, because each update to
i must be reflected in the shared value for i before the update to j occurs. It is possible,
however, that any given invocation of method two might observe a value for j that is much
greater than the value observed for i, because method one might be executed many times
between the moment when method two fetches the value of i and the moment when method
two fetches the value of j.

See §17.4 for more discussion and examples.

8.3.2 Field Initialization

If a declarator in a field declaration has a variable initializer, then the declarator
has the semantics of an assignment (§15.26) to the declared variable.

If the declarator is for a class variable (that is, a static field), then the following
rules apply to its initializer:

* It is a compile-time error if a reference by simple name to any instance variable
occurs in the initializer.

* It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11.2, §15.12) occurs in the initializer.

* At run time, the initializer is evaluated and the assignment performed exactly
once, when the class is initialized (§12.4.2).

Note that static fields that are constant variables (§4.12.4) are initialized before
other static fields (§12.4.2). This also applies in interfaces (§9.3.1). Such fields
will never be observed to have their default initial values (§4.12.5), even by
devious programs.

If the declarator is for an instance variable (that is, a field that is not static), then
the following rules apply to its initializer:

* The initializer may use the simple name of any class variable declared in or
inherited by the class, even one whose declaration occurs textually after the
initializer.

8.3
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* The initializer may refer to the current object this (§15.8.3) and may use the
keyword super (§15.11.2, §15.12).

* At run time, the initializer is evaluated and the assignment performed each time
an instance of the class is created (§12.5).

Exception checking for a variable initializer in a field declaration is specified in
§11.2.3.

Variable initializers are also used in local variable declaration statements (§14.4), where
the initializer is evaluated and the assignment performed each time the local variable
declaration statement is executed.

Example 8.3.2-1. Field Initialization

class Point {
int x =1, y = 5;
}
class Test {
public static void main(String[] args) {
Point p = new Point();
System.out.println(p.x + ", " + p.y);

}
This program produces the output:
1, 5
because the assighments to x and y occur whenever a new Point is created.

Example 8.3.2-2. Forward Reference to a Class Variable

class Test {
float £ = j;
static int j = 1;

}

This program compiles without error; it initializes j to 1 when class Test is initialized, and
initializes £ to the current value of j every time an instance of class Test is created.

8.3.3 Forward References During Field Initialization

Use of class variables whose declarations appear textually after the use is
sometimes restricted, even though these class variables are in scope (§6.3).
Specifically, it is a compile-time error if all of the following are true:
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The declaration of a class variable in a class or interface c appears textually after
a use of the class variable;

The use is a simple name in either a class variable initializer of ¢ or a static
initializer of c;

The use is not on the left hand side of an assignment;

c is the innermost class or interface enclosing the use.

Use of instance variables whose declarations appear textually after the use
is sometimes restricted, even though these instance variables are in scope.
Specifically, it is a compile-time error if all of the following are true:

The declaration of an instance variable in a class or interface ¢ appears textually
after a use of the instance variable;

The use is a simple name in either an instance variable initializer of ¢ or an
instance initializer of c;

The use is not on the left hand side of an assignment;

c is the innermost class or interface enclosing the use.

Example 8.3.3-1. Restrictions on Field Initialization

A compile-time error occurs for this program:

class Testl {
int i = j; // compile-time error:
// incorrect forward reference

int j 1;

whereas the following program compiles without error:

class Test2 {
Test2() { k = 2; }

int j = 1;
int i = j;
int k;

even though the constructor for Test2 (§8.8) refers to the field k that is declared three
lines later.

The restrictions above are designed to catch, at compile time, circular or otherwise
malformed initializations. Thus, both:

class Z {
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static int i = j + 2;
static int j = 4;

}

and:

class Z {
static { 1 = j + 2; }
static int i, Jj;
static { j = 4; }

result in compile-time errors. Accesses by methods are not checked in this way, so:

class Z {

static int peek() { return j; }
static int i = peek();
static int j = 1;
}
class Test {
public static void main(String[] args) {
System.out.println(z.1i);
}
}

produces the output:

because the variable initializer for i uses the class method peek to access the value of the
variable j before j has been initialized by its variable initializer, at which point it still has
its default value (§4.12.5).

A more elaborate example is:

class UseBeforeDeclaration {
static {
x = 100;
// ok - assignment
int y = x + 1;
// error - read before declaration
int v = x = 3;
// ok - x at left hand side of assignment
int z = UseBeforeDeclaration.x * 2;
// ok - not accessed via simple name

Object o = new Object() {
void foo() { x++; }
// ok - occurs in a different class
{ x++; }
// ok - occurs in a different class
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j = 200;

// ok - assignment
j=3+1;

// error - right hand side reads before declaration
int k= j =3+ 1;

// error - illegal forward reference to j
int n = j = 300;

// ok - j at left hand side of assignment
int h = j++;

// error - read before declaration
int 1 = this.j * 3;

// ok - not accessed via simple name

Object o = new Object() {
void foo(){ j++; }
// ok - occurs in a different class
{3i=3+1;}
// ok - occurs in a different class

int w = x = 3;
// ok - x at left hand side of assignment
int p = x;
// ok - instance initializers may access static fields

static int u =
(new Object() { int bar() { return x; } }).bar();
// ok - occurs in a different class

static int x;

int m = j = 4;
// ok - j at left hand side of assignment
int o =
(new Object() { int bar() { return j; } }).bar();
// ok - occurs in a different class
int j;

8.4 Method Declarations

A method declares executable code that can be invoked, passing a fixed number
of values as arguments.
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MethodDeclaration:
{MethodModifier} MethodHeader MethodBody

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters { Annotation} Result MethodDeclarator [Throws]

MethodDeclarator:
Identifier ( [FormalParameterList] ) [Dims]

The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [ ] {{Annotation} [ 1}

The FormalParameterList is described in §8.4.1, the MethodModifier clause in
§8.4.3,the TypeParameters clause in §8.4.4,the Result clause in §8.4.5, the Throws
clause in §8.4.6, and the MethodBody in §8.4.7.

The Identifier in a MethodDeclarator may be used in a name to refer to the method
(§6.5.7.1, §15.12).

It is a compile-time error for the body of a class to declare as members two methods
with override-equivalent signatures (§8.4.2).

The scope and shadowing of a method declaration is specified in §6.3 and §6 4.

The declaration of a method that returns an array is allowed to place some or all
of the bracket pairs that denote the array type after the formal parameter list. This
syntax is supported for compatibility with early versions of the Java programming
language. It is very strongly recommended that this syntax is not used in new code.

8.4.1 Formal Parameters

The formal parameters of a method or constructor, if any, are specified by a list
of comma-separated parameter specifiers. Each parameter specifier consists of a
type (optionally preceded by the £inal modifier and/or one or more annotations)
and an identifier (optionally followed by brackets) that specifies the name of the
parameter.

If a method or constructor has no formal parameters, only an empty pair of
parentheses appears in the declaration of the method or constructor.
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FormalParameterList:
ReceiverParameter
FormalParameters , LastFormalParameter
LastFormalParameter

FormalParameters:
FormalParameter {, FormalParameter}
ReceiverParameter {, FormalParameter}

FormalParameter:
{VariableModifier} UnannType VariableDeclaratorld

VariableModifier:
(one of)

Annotation final

ReceiverParameter:
{Annotation} UnannType [Identifier .| this

LastFormalParameter:
{VariableModifier} UnannType { Annotation} . .. VariableDeclaratorld
FormalParameter

The following productions from §4.3 and §8.3 are shown here for convenience:

VariableDeclaratorld:
Identifier [Dims]

Dims:
{Annotation} [ ] {{Annotation} [ 1}

The last formal parameter of a method or constructor is special: it may be a variable
arity parameter, indicated by an ellipsis following the type.

Note that the ellipsis (. ..) is a token unto itself (§3.11). It is possible to put whitespace
between it and the type, but this is discouraged as a matter of style.

If the last formal parameter is a variable arity parameter, the method is a variable
arity method. Otherwise, it is a fixed arity method.

The receiver parameter is an optional syntactic device for an instance method or an
inner class's constructor. For an instance method, the receiver parameter represents
the object for which the method is invoked. For an inner class's constructor, the
receiver parameter represents the immediately enclosing instance of the newly
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constructed object. Either way, the receiver parameter exists solely to allow the
type of the represented object to be denoted in source code, so that the type may
be annotated. The receiver parameter is not a formal parameter; more precisely,
it is not a declaration of any kind of variable (§4.12.3), it is never bound to any
value passed as an argument in a method invocation expression or qualified class
instance creation expression, and it has no effect whatsoever at run time.

The rules for annotation modifiers on a formal parameter declaration and on a
receiver parameter are specified in §9.7.4 and §9.7.5.

Itis a compile-time error if £inal appears more than once as a modifier for a formal
parameter declaration.

It is a compile-time error to use mixed array notation (§10.2) for a variable arity
parameter.

The scope and shadowing of a formal parameter is specified in §6.3 and §6.4.

It is a compile-time error for a method or constructor to declare two formal
parameters with the same name. (That is, their declarations mention the same
Identifier.)

It is a compile-time error if a formal parameter that is declared £inal is assigned
to within the body of the method or constructor.

A receiver parameter may appear only in the FormalParameterList of an instance
method or an inner class's constructor; otherwise, a compile-time error occurs.

Where a receiver parameter is allowed, its type and name are specified as follows:

* In an instance method, the type of the receiver parameter must be the class or
interface in which the method is declared, and the name of the receiver parameter
must be this; otherwise, a compile-time error occurs.

* In an inner class's constructor, the type of the receiver parameter must be the
class or interface which is the immediately enclosing type declaration of the inner
class, and the name of the receiver parameter must be Identifier . this where
Identifier is the simple name of the class or interface which is the immediately
enclosing type declaration of the inner class; otherwise, a compile-time error
occurs.

The declared type of a formal parameter depends on whether it is a variable arity
parameter:

 If the formal parameter is not a variable arity parameter, then the declared
type is denoted by UnannType if no bracket pairs appear in UnannType and
VariableDeclaratorld, and specified by §10.2 otherwise.
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* If the formal parameter is a variable arity parameter, then the declared type is
specified by §10.2. (Note that "mixed notation" is not permitted for variable arity
parameters.)

If the declared type of a variable arity parameter has a non-reifiable element
type (§4.7), then a compile-time unchecked warning occurs for the declaration
of the variable arity method, unless the method is annotated with @safevarargs
(§9.6.4.7) or the unchecked warning is suppressed by @SuppressWarnings
(§9.64.5).

When the method or constructor is invoked (§15.12), the values of the actual
argument expressions initialize newly created parameter variables, each of the
declared type, before execution of the body of the method or constructor. The
Identifier that appears in the Declaratorld may be used as a simple name in the
body of the method or constructor to refer to the formal parameter.

Invocations of a variable arity method may contain more actual argument
expressions than formal parameters. All the actual argument expressions that do
not correspond to the formal parameters preceding the variable arity parameter will
be evaluated and the results stored into an array that will be passed to the method
invocation (§15.12.4.2).

A method or constructor parameter of type £loat always contains an element of
the float value set (§4.2.3); similarly, a method or constructor parameter of type
double always contains an element of the double value set. It is not permitted for a
method or constructor parameter of type £loat to contain an element of the float-
extended-exponent value set that is not also an element of the float value set, nor for
a method parameter of type double to contain an element of the double-extended-
exponent value set that is not also an element of the double value set.

Where an actual argument expression corresponding to a parameter variable is
not FP-strict (§15.4), evaluation of that actual argument expression is permitted to
use intermediate values drawn from the appropriate extended-exponent value sets.
Prior to being stored in the parameter variable, the result of such an expression
is mapped to the nearest value in the corresponding standard value set by being
subjected to invocation conversion (§5.3).

Here are some examples of receiver parameters in instance methods and inner classes'
constructors:

class Test {
Test(/* 22 22 */) {}
// No receiver parameter is permitted in the constructor of
// a top level class, as there is no conceivable type or name.
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void m(Test this) {}
// OK: receiver parameter in an instance method

static void n(Test this) {}
// Illegal: receiver parameter in a static method

class A {
A(Test Test.this) {}
// OK: the receiver parameter represents the instance
// of Test which immediately encloses the instance
// of A being constructed.

void m(A this) {}
// OK: the receiver parameter represents the instance
// of A for which A.m() is invoked.

class B {
B(Test.A A.this) {}
// OK: the receiver parameter represents the instance
// of A which immediately encloses the instance of B
// being constructed.

void m(Test.A.B this) {}

// OK: the receiver parameter represents the instance
// of B for which B.m() is invoked.

B's constructor and instance method show that the type of the receiver parameter may be
denoted with a qualified TypeName like any other type; but that the name of the receiver
parameter in an inner class's constructor must use the simple name of the enclosing class.

8.4.2 Method Signature

Two methods or constructors, ¥ and n, have the same signature if they have the
same name, the same type parameters (if any) (§8.4.4), and, after adapting the
formal parameter types of n to the the type parameters of M, the same formal
parameter types.

The signature of a method m; is a subsignature of the signature of a method m; if
either:

* m, has the same signature as m;, or
* the signature of m; is the same as the erasure (§4.6) of the signature of m.

Two method signatures m; and m, are override-equivalent iff either m; is a
subsignature of m, or m; is a subsignature of m;.
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It is a compile-time error to declare two methods with override-equivalent
signatures in a class.

Example 8.4.2-1. Override-Equivalent Signatures

class Point {
int x, y;
abstract void move(int dx, int dy);
void move(int dx, int dy) { x += dx; y += dy; }

This program causes a compile-time error because it declares two move methods with the
same (and hence, override-equivalent) signature. This is an error even though one of the
declarations is abstract.

The notion of subsignature is designed to express a relationship between two methods
whose signatures are not identical, but in which one may override the other. Specifically,
it allows a method whose signature does not use generic types to override any generified
version of that method. This is important so that library designers may freely generify
methods independently of clients that define subclasses or subinterfaces of the library.

Consider the example:

class CollectionConverter {
List toList(Collection c) {...}
}

class Overrider extends CollectionConverter {
List toList(Collection c) {...}

}

Now, assume this code was written before the introduction of generics, and now the author
of class CollectionConverter decides to generify the code, thus:

class CollectionConverter {
<T> List<T> toList(Collection<T> c) {...}
}

Without special dispensation, Overrider.toList would no longer override
CollectionConverter.toList. Instead, the code would be illegal. This would
significantly inhibit the use of generics, since library writers would hesitate to migrate
existing code.

8.4.3 Method Modifiers

MethodModifier:
(one of)

Annotation public protected private
abstract static final synchronized native strictfp
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The rules for annotation modifiers on a method declaration are specified in §9.7 .4
and §9.7.5.

It is a compile-time error if the same keyword appears more than once as a modifier
for a method declaration.

It is a compile-time error if a method declaration that contains the keyword
abstract also contains any one of the keywords private, static, final, native,
strictfp, Or synchronized.

It is a compile-time error if a method declaration that contains the keyword native
also contains strictfp.

If two or more (distinct) method modifiers appear in a method declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

8.4.3.1 abstract Methods

An abstract method declaration introduces the method as a member, providing
its signature (§8.4.2), result (§8.4.5), and throws clause if any (§8.4.6), but does
not provide an implementation (§8.4.7). A method that is not abstract may be
referred to as a concrete method.

The declaration of an abstract method m must appear directly within an abstract
class (call it a) unless it occurs within an enum declaration (§8.9); otherwise a
compile-time error occurs.

Every subclass of athat is not abstract (§8.1.1.1) must provide an implementation
for m, or a compile-time error occurs.

An abstract class can override an abstract method by providing another
abstract method declaration.

This can provide a place to put a documentation comment, to refine the return type, or to
declare that the set of checked exceptions that can be thrown by that method, when it is
implemented by its subclasses, is to be more limited.

An instance method that is not abstract can be overridden by an abstract
method.

Example 8.4.3.1-1. Abstract/Abstract Method Overriding

class BufferEmpty extends Exception {
BufferEmpty() { super(); }
BufferEmpty(String s) { super(s); }
}

class BufferError extends Exception {
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BufferError() { super(); }
BufferError(String s) { super(s); }
}
interface Buffer {
char get() throws BufferEmpty, BufferError;
}
abstract class InfiniteBuffer implements Buffer {
public abstract char get() throws BufferError;

The overriding declaration of method get in class InfiniteBuffer states that method
get in any subclass of InfiniteBuffer never throws a BufferEmpty exception,
putatively because it generates the data in the buffer, and thus can never run out of data.

Example 8.4.3.1-2. Abstract/Non-Abstract Overriding

We can declare an abstract class Point that requires its subclasses to implement
tostring if they are to be complete, instantiable classes:

abstract class Point {
int x, y;
public abstract String toString();

This abstract declaration of toString overrides the non-abstract toString method
of class Object. (Class Object is the implicit direct superclass of class Point.) Adding
the code:

class ColoredPoint extends Point {
int color;
public String toString() {
return super.toString() + ": color

+ color; // error

results in a compile-time error because the invocation super.toString() refers to
method toString in class Point, which is abstract and therefore cannot be invoked.
Method toString of class Object can be made available to class ColoredPoint only if
class Point explicitly makes it available through some other method, as in:

abstract class Point {

int x, y;

public abstract String toString();

protected String objString() { return super.toString(); }
}
class ColoredPoint extends Point {

int color;

public String toString() {

return objString() + ": color

+ color; // correct
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84.3.2 static Methods
A method that is declared static is called a class method.

It is a compile-time error to use the name of a type parameter of any surrounding
declaration in the header or body of a class method.

A class method is always invoked without reference to a particular object. It is a
compile-time error to attempt to reference the current object using the keyword
this (§15.8.3) or the keyword super (§15.11.2).

A method that is not declared static is called an instance method, and sometimes
called a non-static method.

An instance method is always invoked with respect to an object, which becomes
the current object to which the keywords this and super refer during execution
of the method body.

8.4.3.3 £final Methods
A method can be declared £inal to prevent subclasses from overriding or hiding it.
It is a compile-time error to attempt to override or hide a £inal method.

A private method and all methods declared immediately within a £inal class
(§8.1.1.2) behave as if they are £inal, since it is impossible to override them.

At run time, a machine-code generator or optimizer can "inline" the body of a final
method, replacing an invocation of the method with the code in its body. The inlining
process must preserve the semantics of the method invocation. In particular, if the target of
an instance method invocation is null, then a NullPointerException must be thrown
even if the method is inlined. A Java compiler must ensure that the exception will be thrown
at the correct point, so that the actual arguments to the method will be seen to have been
evaluated in the correct order prior to the method invocation.

Consider the example:

final class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
}
class Test {
public static void main(String[] args) {
Point[] p = new Point[100];
for (int i = 0; i < p.length; i++) {
pli] = new Point();
p[i].move(i, p.length-1-i);
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Inlining the method move of class Point in method main would transform the for loop
to the form:

for (int i = 0; i < p.length; i++) {
p[i] = new Point();
Point pi = p[i];
int j = p.length-1-i;
pi.x += i;
pi.y += J;

The loop might then be subject to further optimizations.

Such inlining cannot be done at compile time unless it can be guaranteed that Test and
Point will always be recompiled together, so that whenever Point - and specifically its
move method - changes, the code for Test .main will also be updated.

8434 native Methods

A method that is native is implemented in platform-dependent code, typically
written in another programming language such as C. The body of a native method
is given as a semicolon only, indicating that the implementation is omitted, instead
of a block (§8.4.7).

For example, the class RandomAccessFile of the package java.io might declare the
following native methods:

package java.io;
public class RandomAccessFile
implements DataOutput, DataInput {
public native void open(String name, boolean writeable)
throws IOException;
public native int readBytes(byte[] b, int off, int 1len)
throws IOException;
public native void writeBytes(byte[] b, int off, int len)
throws IOException;
public native long getFilePointer() throws IOException;
public native void seek(long pos) throws IOException;
public native long length() throws IOException;
public native void close() throws IOException;

84.3.5 strictfp Methods

The effect of the strictfp modifier is to make all £loat or double expressions
within the method body be explicitly FP-strict (§15.4).
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8.4.3.6 synchronized Methods

A synchronized method acquires a monitor (§17.1) before it executes.

For a class (static) method, the monitor associated with the class object for the
method's class is used.

For an instance method, the monitor associated with this (the object for which the
method was invoked) is used.

Example 8.4.3.6-1. synchronized Monitors

These are the same monitors that can be used by the synchronized statement (§14.19).
Thus, the code:

class Test {

int count;

synchronized void bump() {
count++;

}

static int classCount;

static synchronized void classBump() {
classCount++;

}

has exactly the same effect as:

class BumpTest {
int count;
void bump() {
synchronized (this) { count++; }
}
static int classCount;
static void classBump() {

try {
synchronized (Class.forName("BumpTest")) {
classCount++;
}

} catch (ClassNotFoundException e) {}

}
Example 8.4.3.6-2. synchronized Methods

public class Box {
private Object boxContents;
public synchronized Object get() {
Object contents = boxContents;
boxContents = null;
return contents;
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}

public synchronized boolean put(Object contents) {
if (boxContents != null) return false;
boxContents = contents;
return true;

}

This program defines a class which is designed for concurrent use. Each instance of the
class Box has an instance variable boxContents that can hold a reference to any object.
You can put an object in a Box by invoking put, which returns false if the box is already
full. You can get something out of a Box by invoking get, which returns a null reference
if the box is empty.

If put and get were not synchronized, and two threads were executing methods for
the same instance of Box at the same time, then the code could misbehave. It might, for
example, lose track of an object because two invocations to put occurred at the same time.

8.4.4 Generic Methods

A method is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the method. The form of
the type parameter section of a generic method is identical to the type parameter
section of a generic class (§8.1.2).

A generic method declaration defines a set of methods, one for each possible
invocation of the type parameter section by type arguments. Type arguments may
not need to be provided explicitly when a generic method is invoked, as they can
often be inferred (§18 (Type Inference)).

The scope and shadowing of a method's type parameter is specified in §6.3.

Two methods or constructors # and n have the same type parameters if both of the
following are true:

* mand v have same number of type parameters (possibly zero).

* Where a,, ..., A, are the type parameters of ¥and By, ..., B, are the type parameters
of v,let O6=[B;:=4,, ..., B,-=A4,]. Then, for all i (1 =i < n), the bound of 4; is the
same type as 0 applied to the bound of B;.

Where two methods or constructors # and ¥ have the same type parameters, a type
mentioned in ~ can be adapted to the type parameters of Mby applying 0, as defined
above, to the type.
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8.4.5 Method Result

The result of a method declaration either declares the type of value that the method
returns (the return type), or uses the keyword void to indicate that the method does
not return a value.

Result:
UnannType

void

If the result is not void, then the return type of a method is denoted by UnannType
if no bracket pairs appear after the formal parameter list, and is specified by §10.2
otherwise.

Return types may vary among methods that override each other if the return types
are reference types. The notion of return-type-substitutability supports covariant
returns, that is, the specialization of the return type to a subtype.

A method declaration d; with return type R; is return-type-substitutable for another
method d, with return type R; iff any of the following is true:

e If r; is void then R, iS void.
 If r; is a primitive type then R, is identical to Rr;.
* If r; is a reference type then one of the following is true:
— Rj, adapted to the type parameters of d, (§8.4.4), is a subtype of Rr,.
— R; can be converted to a subtype of r, by unchecked conversion (§5.1.9).

— d; does not have the same signature as d, (§8.4.2), and r; = Ir,l.

An unchecked conversion is allowed in the definition, despite being unsound, as a special
allowance to allow smooth migration from non-generic to generic code. If an unchecked
conversion is used to determine that R; is return-type-substitutable for R,, then R; is
necessarily not a subtype of R and the rules for overriding (§8.4.8.3, §9.4.1) will require
a compile-time unchecked warning.

8.4.6 Method Throws

A throws clause is used to declare any checked exception classes (§11.1.1) that
the statements in a method or constructor body can throw (§11.2.2).

Throws:
throws ExceptionTypelList
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ExceptionTypelList:
ExceptionType {, ExceptionType}

ExceptionType:
ClassType
TypeVariable

It is a compile-time error if an ExceptionType mentioned in a throws clause is not
a subtype (§4.10) of Throwable.

Type variables are allowed in a throws clause even though they are not allowed
in a catch clause (§14.20).

It is permitted but not required to mention unchecked exception classes (§11.1.1)
in a throws clause.

The relationship between a throws clause and the exception checking for a method
or constructor body is specified in §11.2.3.

Essentially, for each checked exception that can result from execution of the body of a
method or constructor, a compile-time error occurs unless its exception type or a supertype
of its exception type is mentioned in a throws clause in the declaration of the method or
constructor.

The requirement to declare checked exceptions allows a Java compiler to ensure that code
for handling such error conditions has been included. Methods or constructors that fail to
handle exceptional conditions thrown as checked exceptions in their bodies will normally
cause compile-time errors if they lack proper exception types in their throws clauses. The
Java programming language thus encourages a programming style where rare and otherwise
truly exceptional conditions are documented in this way.

The relationship between the throws clause of a method and the throws clauses of
overridden or hidden methods is specified in §8.4.8.3.

Example 8.4.6-1. Type Variables as Thrown Exception Types

import java.io.FileNotFoundException;
interface PrivilegedExceptionAction<E extends Exception> {
void run() throws E;
}
class AccessController {
public static <E extends Exception>
Object doPrivileged(PrivilegedExceptionAction<E> action) throws E {
action.run();
return "success";
}
}
class Test {
public static void main(String[] args) {
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try {
AccessController.doPrivileged(
new PrivilegedExceptionAction<FileNotFoundException>() {
public void run() throws FileNotFoundException {
// ... delete a file ...
}
)i
} catch (FileNotFoundException f) { /* Do something */ }

8.4.7 Method Body

A method body is either a block of code that implements the method or simply a
semicolon, indicating the lack of an implementation.

MethodBody:
Block

r

The body of a method must be a semicolon if the method is abstract or native
(§8.4.3.1, §8.4.3.4). More precisely:

e It is a compile-time error if a method declaration is either abstract or native
and has a block for its body.

e Itis a compile-time error if a method declaration is neither abstract nor native
and has a semicolon for its body.

If an implementation is to be provided for a method declared void, but the implementation
requires no executable code, the method body should be written as a block that contains
no statements: "{ }".

The rules for return statements in a method body are specified in §14.17.

If a method is declared to have a return type (§8.4.5), then a compile-time error
occurs if the body of the method can complete normally (§14.1).

In other words, a method with a return type must return only by using a return statement
that provides a value return; the method is not allowed to "drop off the end of its body".
See §14.17 for the precise rules about return statements in a method body.

It is possible for a method to have a return type and yet contain no return statements.
Here is one example:

class DizzyDean {
int pitch() { throw new RuntimeException("90 mph?!"); }

}
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8.4.8 Inheritance, Overriding, and Hiding

A class ¢ inherits from its direct superclass all concrete methods m (both static
and instance) of the superclass for which all of the following are true:

* mis a member of the direct superclass of c.

* mis public, protected, or declared with package access in the same package
as c.

* No method declared in c has a signature that is a subsignature (§8.4.2) of the
signature of m.

A class cinherits from its direct superclass and direct superinterfaces all abstract
and default (§9.4) methods m for which all of the following are true:

* mis a member of the direct superclass or a direct superinterface, b, of c.

* mis public, protected, or declared with package access in the same package
as c.

* No method declared in ¢ has a signature that is a subsignature (§8.4.2) of the
signature of m.

* No concrete method inherited by ¢ from its direct superclass has a signature that
is a subsignature of the signature of m.

* There exists no method m' that is a member of the direct superclass or a direct
superinterface, D', of ¢ (m distinct from m', p distinct from D'), such that m' from
D' overrides the declaration of the method m.

A class does not inherit static methods from its superinterfaces.

Note that it is possible for an inherited concrete method to prevent the inheritance of an
abstract or default method. (Later we will assert that the concrete method overrides the
abstract or default method "from c".) Also, it is possible for one supertype method to
prevent the inheritance of another supertype method if the former "already" overrides the
latter - this is the same as the rule for interfaces (§9.4.1), and prevents conflicts in which
multiple default methods are inherited and one implementation is clearly meant to supersede
the other.

Note that methods are overridden or hidden on a signature-by-signature basis. If, for

example, a class declares two public methods with the same name (§8.4.9), and a subclass
overrides one of them, the subclass still inherits the other method.

8.4.8.1 Overriding (by Instance Methods)

An instance method m. declared in or inherited by class ¢, overrides from c another
method m, declared in class a4, iff all of the following are true:
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* Ais a superclass of c.
¢ ¢ does not inherit mj,.

* The signature of mc is a subsignature (§8.4.2) of the signature of m,.

One of the following is true:
— ma 1S public.
— my 1S protected.

— ma is declared with package access in the same package as c, and either ¢
declares mc or m, is a member of the direct superclass of c.

— my is declared with package access and mc overrides m, from some superclass
of c.

— mja is declared with package access and mq overrides a method m' from ¢ (m*
distinct from m. and m,), such that m' overrides m, from some superclass of c.

If a non-abstract method m: overrides an abstract method m, from a class ¢, then
mc is said to implement my from c.

An instance method m declared in or inherited by class ¢, overrides from c another
method m; declared in an interface 1, iff all of the following are true:

* 1is a superinterface of c.
* m;is an abstract or default method.

* The signature of m. is a subsignature (§8.4.2) of the signature of m;.

The signature of an overriding method may differ from the overridden one if a formal
parameter in one of the methods has a raw type, while the corresponding parameter in the
other has a parameterized type. This accommodates migration of pre-existing code to take
advantage of generics.

The notion of overriding includes methods that override another from some subclass of
their declaring class. This can happen in two ways:

* A concrete method in a generic superclass can, under certain parameterizations, have
the same signature as an abstract method in that class. In this case, the concrete method
is inherited and the abstract method is not (as described above). The inherited
method should then be considered to override its abstract peer from c. (This scenario is
complicated by package access: if ¢ is in a different package, then my would not have
been inherited anyway, and should not be considered overridden.)

* A method inherited from a class can override a superinterface method. (Happily, package
access is not a concern here.)

It is a compile-time error if an instance method overrides a static method.
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In this respect, overriding of methods differs from hiding of fields (§8.3), for it is
permissible for an instance variable to hide a static variable.

An overridden method can be accessed by using a method invocation expression
(§15.12) that contains the keyword super. A qualified name or a cast to a superclass
type is not effective in attempting to access an overridden method.

In this respect, overriding of methods differs from hiding of fields.

The presence or absence of the strictfp modifier has absolutely no effect on the
rules for overriding methods and implementing abstract methods. For example, it
is permitted for a method that is not FP-strict to override an FP-strict method and
it is permitted for an FP-strict method to override a method that is not FP-strict.

Example 8.4.8.1-1. Overriding

class Point {
int x = 0, y = 0;
void move(int dx, int dy) { x += dx; y += dy; }
}
class SlowPoint extends Point {
int xLimit, yLimit;
void move(int dx, int dy) {
super.move(limit(dx, xLimit), limit(dy, yLimit));
}
static int limit(int d, int limit) {
return d > limit ? limit : d < -limit ? -limit : d;

}

Here, the class SlowPoint overrides the declarations of method move of class Point with
its own move method, which limits the distance that the point can move on each invocation
of the method. When the move method is invoked for an instance of class SlowPoint, the
overriding definition in class SlowPoint will always be called, even if the reference to the
SlowPoint object is taken from a variable whose type is Point.

Example 8.4.8.1-2. Overriding

Overriding makes it easy for subclasses to extend the behavior of an existing class, as shown
in this example:

import java.io.OutputStream;
import java.io.IOException;

class BufferOutput {
private OutputStream o;
BufferOutput (OutputStream o) { this.o = o; }
protected byte[] buf = new byte[512];
protected int pos = 0;
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public void putchar(char c) throws IOException {
if (pos == buf.length) flush();
buf[pos++] = (byte)c;

}

public void putstr(String s) throws IOException {
for (int i = 0; i < s.length(); i++)

putchar(s.charAt(i));

}

public void flush() throws IOException {
o.write(buf, 0, pos);
pos = 0;

}
class LineBufferOutput extends BufferOutput {
LineBufferOutput (OutputStream o) { super(o); }
public void putchar(char c) throws IOException {
super.putchar(c);
if (¢ == '\n') flush();

}
class Test {
public static void main(String[] args) throws IOException {
LineBufferOutput lbo = new LineBufferOutput(System.out);
lbo.putstr("lbo\nlbo");
System.out.print("print\n");
lbo.putstr("\n");

This program produces the output:

lbo
print
1bo

The class BufferOutput implements a very simple buffered version of an
OutputStream, flushing the output when the buffer is full or £lush is invoked. The
subclass LineBufferOutput declares only a constructor and a single method putchar,
which overrides the method putchar of Buf ferOutput. It inherits the methods putstr
and flush from class Buf ferOutput.

In the putchar method of a LineBufferOutput object, if the character argument is a
newline, then it invokes the £lush method. The critical point about overriding in this
example is that the method putstr, which is declared in class Buf ferOutput, invokes the
putchar method defined by the current object this, which is not necessarily the putchar
method declared in class Buf ferOutput.

Thus, when putstr is invoked in main using the LineBufferOutput object 1bo, the
invocation of putchar in the body of the putstr method is an invocation of the putchar
of the object 1bo, the overriding declaration of putchar that checks for a newline. This
allows a subclass of Buf ferOutput to change the behavior of the putstr method without
redefining it.
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Documentation for a class such as BufferOutput, which is designed to be extended,
should clearly indicate what is the contract between the class and its subclasses, and
should clearly indicate that subclasses may override the putchar method in this way.
The implementor of the Bufferoutput class would not, therefore, want to change the
implementation of putstr in a future implementation of BufferOutput not to use the
method putchar, because this would break the pre-existing contract with subclasses. See
the discussion of binary compatibility in §13 (Binary Compatibility), especially §13.2.

8.4.8.2 Hiding (by Class Methods)

If a class c declares or inherits a static method m, then mis said to hide any method
m', where the signature of mis a subsignature (§8.4.2) of the signature of m’, in the
superclasses and superinterfaces of ¢ that would otherwise be accessible to code
in C.

It is a compile-time error if a static method hides an instance method.

In this respect, hiding of methods differs from hiding of fields (§8.3), for it is permissible
for a static variable to hide an instance variable. Hiding is also distinct from shadowing
(§6.4.1) and obscuring (§6.4.2).

A hidden method can be accessed by using a qualified name or by using a method
invocation expression (§15.12) that contains the keyword super or a cast to a
superclass type.

In this respect, hiding of methods is similar to hiding of fields.
Example 8.4.8.2-1. Invocation of Hidden Class Methods

A class (static) method that is hidden can be invoked by using a reference whose type
is the class that actually contains the declaration of the method. In this respect, hiding of
static methods is different from overriding of instance methods. The example:

class Super {
static String greeting() { return "Goodnight"; }
String name() { return "Richard"; }
}
class Sub extends Super {
static String greeting() { return "Hello"; }
String name() { return "Dick"; }
}
class Test {
public static void main(String[] args) {
Super s = new Sub();
System.out.println(s.greeting() + ", " + s.name());

}

produces the output:
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Goodnight, Dick

because the invocation of greeting uses the type of s, namely Super, to figure out, at
compile time, which class method to invoke, whereas the invocation of name uses the class
of s, namely Sub, to figure out, at run time, which instance method to invoke.

8.4.8.3 Requirements in Overriding and Hiding

If a method declaration d; with return type R; overrides or hides the declaration of
another method d, with return type Rr,, then d; must be return-type-substitutable
(§8.4.5) for d,, or a compile-time error occurs.

This rule allows for covariant return types - refining the return type of a method when
overriding it.

If r; is not a subtype of r,, a compile-time unchecked warning occurs unless
suppressed by the suppressWarnings annotation (§9.6.4.5).

A method that overrides or hides another method, including methods that
implement abstract methods defined in interfaces, may not be declared to throw
more checked exceptions than the overridden or hidden method.

In this respect, overriding of methods differs from hiding of fields (§8.3), for it is
permissible for a field to hide a field of another type.

More precisely, suppose that B is a class or interface, and a is a superclass or
superinterface of B, and a method declaration m, in B overrides or hides a method
declaration m; in A. Then:

* If m, has a throws clause that mentions any checked exception types, then m;
must have a throws clause, or a compile-time error occurs.

» For every checked exception type listed in the throws clause of m,, that same
exception class or one of its supertypes must occur in the erasure (§4.6) of the
throws clause of m;; otherwise, a compile-time error occurs.

e If the unerased throws clause of m; does not contain a supertype of each
exception type in the throws clause of m, (adapted, if necessary, to the type
parameters of m;), a compile-time unchecked warning occurs.

It is a compile-time error if a type declaration 7 has a member method m; and there
exists a method m, declared in T or a supertype of T such that all of the following
are true:

¢ m; and m, have the same name.

* m,is accessible from 7.
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* The signature of m; is not a subsignature (§8.4.2) of the signature of m.

* The signature of m; or some method m; overrides (directly or indirectly) has the
same erasure as the signature of m, or some method m, overrides (directly or
indirectly).

These restrictions are necessary because generics are implemented via erasure. The rule
above implies that methods declared in the same class with the same name must have
different erasures. It also implies that a type declaration cannot implement or extend two
distinct invocations of the same generic interface.

The access modifier (§6.6) of an overriding or hiding method must provide at least
as much access as the overridden or hidden method, as follows:

* If the overridden or hidden method is public, then the overriding or hiding
method must be public; otherwise, a compile-time error occurs.

* If the overridden or hidden method is protected, then the overriding or hiding
method must be protected or public; otherwise, a compile-time error occurs.

* If the overridden or hidden method has package access, then the overriding or
hiding method must not be private; otherwise, a compile-time error occurs.

Note that a private method cannot be hidden or overridden in the technical sense of
those terms. This means that a subclass can declare a method with the same signature as
a private method in one of its superclasses, and there is no requirement that the return
type or throws clause of such a method bear any relationship to those of the private
method in the superclass.

Example 8.4.8.3-1. Covariant Return Types

The following declarations are legal in the Java programming language from Java SE 5.0
onwards:

class C implements Cloneable {
C copy() throws CloneNotSupportedException {
return (C)clone();
}
}

class D extends C implements Cloneable {
D copy() throws CloneNotSupportedException {
return (D)clone();

}

The relaxed rule for overriding also allows one to relax the conditions on abstract classes
implementing interfaces.

249



84 Method Declarations CLASSES

Example 8.4.8.3-2. Unchecked Warning from Return Type
Consider:

class StringSorter {
// turns a collection of strings into a sorted list
List toList(Collection c) {...}

and assume that someone subclasses StringSorter:

class Overrider extends StringSorter {
List toList(Collection c) {...}

Now, at some point the author of stringSorter decides to generify the code:

class StringSorter {
// turns a collection of strings into a sorted list
List<String> toList(Collection<String> c) {...}

An unchecked warning would be given when compiling Overrider against the new
definition of StringSorter because the return type of Overrider.toList is List,
which is not a subtype of the return type of the overridden method, List<String>.

Example 8.4.8.3-3. Incorrect Overriding because of throws

This program uses the usual and conventional form for declaring a new exception type, in
its declaration of the class BadPointException:

class BadPointException extends Exception {
BadPointException() { super(); }
BadPointException(String s) { super(s); }
}
class Point {
int x, y;
void move(int dx, int dy) { x += dx; y += dy; }
}
class CheckedPoint extends Point {
void move(int dx, int dy) throws BadPointException {
if ((x +dx) <0 || (v + dy) <0)
throw new BadPointException();
x += dx; y += dy;

The program results in a compile-time error, because the override of method move in class
CheckedPoint declares that it will throw a checked exception that the move in class Point
has not declared. If this were not considered an error, an invoker of the method move on
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a reference of type Point could find the contract between it and Point broken if this
exception were thrown.

Removing the throws clause does not help:

class CheckedPoint extends Point {
void move(int dx, int dy) {
if ((x +dx) <0 || (y + dy) < 0)
throw new BadPointException();
X += dx; y += dy;

A different compile-time error now occurs, because the body of the method move cannot
throw a checked exception, namely BadPointException, that does not appear in the
throws clause for move.

Example 8.4.8.3-4. Erasure Affects Overriding

A class cannot have two member methods with the same name and type erasure:

class C<T> {
T id (T %) {...}
}

class D extends C<String> {
Object id(Object x) {...}

This is illegal since D.id(Object) is a member of D, C<String>.id(String) is
declared in a supertype of D, and:

¢ The two methods have the same name, id

e C<String>.id(String) is accessible to D

e The signature of D.id(Object) is not a subsignature of that of
C<String>.id(String)

¢ The two methods have the same erasure

Two different methods of a class may not override methods with the same erasure:

class C<T> {
T id(T x) {...}

}

interface I<T> {
T id(T x);

}

class D extends C<String> implements I<Integer> {
public String id(String x) {...}
public Integer id(Integer x) {...}
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This is also illegal, since D.id (String) is a member of D, D.id(Integer) is declared
in D, and:

¢ The two methods have the same name, id
e D.id(Integer) is accessible to D
* The two methods have different signatures (and neither is a subsignature of the other)

e D.id(String) overrides C<String>.id(String) and D.id(Integer) overrides
I.id(Integer) yet the two overridden methods have the same erasure

8.4.8.4 Inheriting Methods with Override-Equivalent Signatures

It is possible for a class to inherit multiple methods with override-equivalent
signatures (§8.4.2).

It is a compile-time error if a class ¢ inherits a concrete method whose signature is
override-equivalent with another method inherited by c.

It is a compile-time error if a class ¢ inherits a default method whose signature
is override-equivalent with another method inherited by c, unless there exists an
abstract method declared in a superclass of ¢ and inherited by c that is override-
equivalent with the two methods.

This exception to the strict default-abstract and default-default conflict rules is made when
an abstract method is declared in a superclass: the assertion of abstract-ness coming from
the superclass hierarchy essentially trumps the default method, making the default method
act as if it were abstract. However, the abstract method from a class does not override
the default method(s), because interfaces are still allowed to refine the signature of the
abstract method coming from the class hierarchy.

Note that the exception does not apply if all override-equivalent abstract methods
inherited by ¢ were declared in interfaces.

Otherwise, the set of override-equivalent methods consists of at least one abstract
method and zero or more default methods; then the class is necessarily an abstract
class and is considered to inherit all the methods.

One of the inherited methods must be return-type-substitutable for every other
inherited method; otherwise, a compile-time error occurs. (The throws clauses do
not cause errors in this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, results in a
compile-time error.
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849 Overloading

If two methods of a class (whether both declared in the same class, or both inherited
by a class, or one declared and one inherited) have the same name but signatures
that are not override-equivalent, then the method name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
clauses of two methods with the same name, unless their signatures are override-
equivalent.

When a method is invoked (§15.12), the number of actual arguments (and any
explicit type arguments) and the compile-time types of the arguments are used,
at compile time, to determine the signature of the method that will be invoked
(§15.12.2). If the method that is to be invoked is an instance method, the actual
method to be invoked will be determined at run time, using dynamic method lookup
(§15.12.4).

Example 8.4.9-1. Overloading

class Point {
float x, y;
void move(int dx, int dy) { x += dx; y += dy; }
void move(float dx, float dy) { x += dx; y += dy; }
public String toString() { return "("+x+","+y+")"; }

}

Here, the class Point has two members that are methods with the same name, move. The
overloaded move method of class Point chosen for any particular method invocation is
determined at compile time by the overloading resolution procedure given in §15.12.

In total, the members of the class Point are the f£1oat instance variables x and y declared in
Point, the two declared move methods, the declared toString method, and the members
that Point inherits from its implicit direct superclass Object (§4.3.2), such as the method
hashCode. Note that Point does not inherit the toString method of class Object
because that method is overridden by the declaration of the toString method in class
Point.

Example 8.4.9-2. Overloading, Overriding, and Hiding

class Point {
int x =0, y = 0;
void move(int dx, int dy) { x += dx; y += dy; }
int color;
}
class RealPoint extends Point {
float x = 0.0f, y = 0.0f;
void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }
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Here, the class RealPoint hides the declarations of the int instance variables x and y of
class Point with its own £1loat instance variables x and y, and overrides the method move
of class Point with its own move method. It also overloads the name move with another
method with a different signature (§8.4.2).

In this example, the members of the class RealPoint include the instance variable
color inherited from the class Point, the £loat instance variables x and y declared in
RealPoint, and the two move methods declared in RealPoint.

Which of these overloaded move methods of class RealPoint will be chosen for any
particular method invocation will be determined at compile time by the overloading
resolution procedure described in §15.12.

This following program is an extended variation of the preceding program:

class Point {
int x = 0, y = 0, color;
void move(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }
int getY() { return y; }
}
class RealPoint extends Point {
float x = 0.0f, y = 0.0f;
void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }
float getX() { return x; }
float getY() { return y; }

Here, the class Point provides methods getX and getY that return the values of its fields
x and y; the class RealPoint then overrides these methods by declaring methods with the
same signature. The result is two errors at compile time, one for each method, because the
return types do not match; the methods in class Point return values of type int, but the
wanna-be overriding methods in class RealPoint return values of type float.

This program corrects the errors of the preceding program:

class Point {
int x = 0, y = 0;
void move(int dx, int dy) { x += dx; y += dy; }
int getX() { return x; }
int getY() { return y; }
int color;
}
class RealPoint extends Point {
float x = 0.0f, y = 0.0f;
void move(int dx, int dy) { move((float)dx, (float)dy); }
void move(float dx, float dy) { x += dx; y += dy; }
int getX() { return (int)Math.floor(x); }

CLASSES
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int getY() { return (int)Math.floor(y); }

Here, the overriding methods getX and getY in class RealPoint have the same return
types as the methods of class Point that they override, so this code can be successfully
compiled.

Consider, then, this test program:

class Test {
public static void main(String[] args) {
RealPoint rp = new RealPoint();
Point p = rp;
rp.move(1.71828f, 4.14159f);
p.move(l, -1);
show(p.x, p.y);
show(rp.x, rp.y);
show(p.getX(), p.get¥());
show(rp.getX(), rp.get¥());
}
static void show(int x, int y) {
System.out.println("(" + x + ", " +y + ")");
}
static void show(float x, float y) {
System.out.println("(" + x + ", " +y + ")");
}

The output from this program is:

(0, 0)
(2.7182798, 3.14159)
(2, 3)
(2, 3)

The first line of output illustrates the fact that an instance of RealPoint actually contains
the two integer fields declared in class Point; it is just that their names are hidden from
code that occurs within the declaration of class RealPoint (and those of any subclasses
it might have). When a reference to an instance of class RealPoint in a variable of type
Point is used to access the field x, the integer field x declared in class Point is accessed.
The fact that its value is zero indicates that the method invocation p.move (1, -1) did not
invoke the method move of class Point; instead, it invoked the overriding method move
of class RealPoint.

The second line of output shows that the field access rp.x refers to the field x declared in
class RealPoint. This field is of type £loat, and this second line of output accordingly
displays floating-point values. Incidentally, this also illustrates the fact that the method
name show is overloaded; the types of the arguments in the method invocation dictate which
of the two definitions will be invoked.
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The last two lines of output show that the method invocations p.getX () and rp.getX()
each invoke the getX method declared in class RealPoint. Indeed, there is no way to
invoke the getX method of class Point for an instance of class RealPoint from outside
the body of RealPoint, no matter what the type of the variable we may use to hold the
reference to the object. Thus, we see that fields and methods behave differently: hiding is
different from overriding.

8.5 Member Type Declarations

A member class is a class whose declaration is directly enclosed in the body of
another class or interface declaration (§8.1.6, §9.1.4).

A member interface is an interface whose declaration is directly enclosed in the
body of another class or interface declaration (§8.1.6, §9.1.4).

The accessibility of a member type in a class or interface declaration is specified
in §6.6.

It is a compile-time error if the same keyword appears more than once as a modifier
for a member type declaration in a class.

The scope and shadowing of a member type is specified in §6.3 and §6.4.

If a class declares a member type with a certain name, then the declaration of that
type is said to hide any and all accessible declarations of member types with the
same name in superclasses and superinterfaces of the class.

In this respect, hiding of member types is similar to hiding of fields (§8.3).

A class inherits from its direct superclass and direct superinterfaces all the
non-private member types of the superclass and superinterfaces that are both
accessible to code in the class and not hidden by a declaration in the class.

A class may inherit two or more type declarations with the same name, either from
two interfaces or from its superclass and an interface. It is a compile-time error to
attempt to refer to any ambiguously inherited class or interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once. It may be referred to by
its simple name without ambiguity.
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8.5.1 Static Member Type Declarations

The static keyword may modify the declaration of a member type ¢ within the
body of a non-inner class or interface 7. Its effect is to declare that ¢ is not an inner
class. Just as a static method of T has no current instance of T in its body, ¢ also
has no current instance of T, nor does it have any lexically enclosing instances.

It is a compile-time error if a static class contains a usage of a non-static
member of an enclosing class.

A member interface is implicitly static (§9.1.1). It is permitted for the declaration
of a member interface to redundantly specify the static modifier.

8.6 Instance Initializers

An instance initializer declared in a class is executed when an instance of the class
is created (§12.5,815.9, §8.8.7.1).

Instancelnitializer:
Block

It is a compile-time error if an instance initializer cannot complete normally
(§14.21).

It is a compile-time error if a return statement (§14.17) appears anywhere within
an instance initializer.

Instance initializers are permitted to refer to the current object via the keyword
this (§15.8.3), to use the keyword super (§15.11.2, §15.12), and to use any type
variables in scope.

Use of instance variables whose declarations appear textually after the use is sometimes
restricted, even though these instance variables are in scope. See §8.3.3 for the precise rules
governing forward reference to instance variables.

Exception checking for an instance initializer is specified in §11.2.3.

8.6
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8.7 Static Initializers

A static initializer declared in a class is executed when the class is initialized
(§12.4.2). Together with any field initializers for class variables (§8.3.2), static
initializers may be used to initialize the class variables of the class.

Staticlnitializer:
static Block
It is a compile-time error if a static initializer cannot complete normally (§14.21).

It is a compile-time error if a return statement (§14.17) appears anywhere within
a static initializer.

It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11, §15.12) or any type variable declared outside the static initializer, appears
anywhere within a static initializer.

Use of class variables whose declarations appear textually after the use is sometimes
restricted, even though these class variables are in scope. See §8.3.3 for the precise rules
governing forward reference to class variables.

Exception checking for a static initializer is specified in §11.2.3.

8.8 Constructor Declarations

A constructor is used in the creation of an object that is an instance of a class
(812.5,815.9).

ConstructorDeclaration:
{ConstructorModifier} ConstructorDeclarator [Throws] ConstructorBody

ConstructorDeclarator:
[TypeParameters] SimpleTypeName ( [FormalParameterList] )

SimpleTypeName:
Identifier

The rules in this section apply to constructors in all class declarations, including
enum declarations. However, special rules apply to enum declarations with regard
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to constructor modifiers, constructor bodies, and default constructors; these rules
are stated in §8.9.2.

The SimpleTypeName in the ConstructorDeclarator must be the simple name of
the class that contains the constructor declaration, or a compile-time error occurs.

In all other respects, a constructor declaration looks just like a method declaration
that has no result (§8.4.5).

Constructor declarations are not members. They are never inherited and therefore
are not subject to hiding or overriding.

Constructors are invoked by class instance creation expressions (§15.9), by
the conversions and concatenations caused by the string concatenation operator
+ (§15.18.1), and by explicit constructor invocations from other constructors
(§8.8.7). Access to constructors is governed by access modifiers (§6.6), so it is
possible to prevent instantiation by declaring an inaccessible constructor (§8.8.10).

Constructors are never invoked by method invocation expressions (§15.12).

Example 8.8-1. Constructor Declarations

class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y =y; }

8.8.1 Formal Parameters

The formal parameters of a constructor are identical in syntax and semantics to
those of a method (§8.4.1).

The constructor of a non-private inner member class implicitly declares, as the
first formal parameter, a variable representing the immediately enclosing instance
of the class (§15.9.2, §15.9.3).

The rationale for why only this kind of class has an implicitly declared constructor
parameter is subtle. The following explanation may be helpful:

1. Inaclassinstance creation expression for a non-private inner member class, §15.9.2
specifies the immediately enclosing instance of the member class. The member class
may have been emitted by a compiler which is different than the compiler of the class
instance creation expression. Therefore, there must be a standard way for the compiler
of the creation expression to pass a reference (representing the immediately enclosing
instance) to the member class's constructor. Consequently, the Java programming
language deems in this section that a non-private inner member class's constructor
implicitly declares an initial parameter for the immediately enclosing instance. §15.9.3
specifies that the instance is passed to the constructor.

8.8
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2. In a class instance creation expression for a local class (not in a static context) or
anonymous class, §15.9.2 specifies the immediately enclosing instance of the local/
anonymous class. The local/anonymous class is necessarily emitted by the same
compiler as the class instance creation expression. That compiler can represent the
immediately enclosing instance how ever it wishes. There is no need for the Java
programming language to implicitly declare a parameter in the local/anonymous
class's constructor.

3. In a class instance creation expression for an anonymous class, and where the
anonymous class's superclass is either inner or local (not in a static context), §15.9.2
specifies the anonymous class's immediately enclosing instance with respect to
the superclass. This instance must be transmitted from the anonymous class to its
superclass, where it will serve as the immediately enclosing instance. Since the
superclass may have been emitted by a compiler which is different than the compiler
of the class instance creation expression, it is necessary to transmit the instance in a
standard way, by passing it as the first argument to the superclass's constructor. Note
that the anonymous class itself is necessarily emitted by the same compiler as the class
instance creation expression, so it would be possible for the compiler to transmit the
immediately enclosing instance with respect to the superclass to the anonymous class
how ever it wishes, before the anonymous class passes the instance to the superclass's
constructor. However, for consistency, the Java programming language deems in
§15.9.5.1 that, in some circumstances, an anonymous class's constructor implicitly
declares an initial parameter for the immediately enclosing instance with respect to
the superclass.

The fact that a non-private inner member class may be accessed by a different compiler
than compiled it, whereas a local or anonymous class is always accessed by the same
compiler that compiled it, explains why the binary name of a non-private inner member
class is defined to be predictable but the binary name of a local or anonymous class is not

(§13.1).

8.8.2 Constructor Signature

It is a compile-time error to declare two constructors with override-equivalent
signatures (§8.4.2) in a class.

It is a compile-time error to declare two constructors whose signatures have the
same erasure (§4.6) in a class.

8.8.3 Constructor Modifiers

ConstructorModifier:

(one of)

Annotation public protected private

The rules for annotation modifiers on a constructor declaration are specified in
§9.7.4 and §9.7.5.
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It is a compile-time error if the same keyword appears more than once as a modifier
in a constructor declaration.

In a normal class declaration, a constructor declaration with no access modifiers
has package access.

If two or more (distinct) method modifiers appear in a method declaration, it is customary,
though not required, that they appear in the order consistent with that shown above in the
production for MethodModifier.

Unlike methods, a constructor cannot be abstract, static, final,native, strictfp,
or synchronized:

¢ A constructor is not inherited, so there is no need to declare it final.
* An abstract constructor could never be implemented.

* A constructor is always invoked with respect to an object, so it makes no sense for a
constructor to be static.

* There is no practical need for a constructor to be synchronized, because it would lock
the object under construction, which is normally not made available to other threads until
all constructors for the object have completed their work.

* The lack of native constructors is an arbitrary language design choice that makes it easy
for an implementation of the Java Virtual Machine to verify that superclass constructors
are always properly invoked during object creation.

* The inability to declare a constructor as strictfp (in contrast to a method (§8.4.3))
is an intentional language design choice; it effectively ensures that a constructor is FP-
strict if and only if its class is FP-strict (§15.4).

8.8.4 Generic Constructors

A constructor is generic if it declares one or more type variables (§4.4).

These type variables are known as the type parameters of the constructor. The
form of the type parameter section of a generic constructor is identical to the type
parameter section of a generic class (§8.1.2).

It is possible for a constructor to be generic independently of whether the class the
constructor is declared in is itself generic.

A generic constructor declaration defines a set of constructors, one for each
possible invocation of the type parameter section by type arguments. Type
arguments may not need to be provided explicitly when a generic constructor is
invoked, as they can often by inferred (§18 (Type Inference)).

The scope and shadowing of a constructor's type parameter is specified in §6.3 and
§6.4.

8.8
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8.8.5 Constructor Throws

The throws clause for a constructor is identical in structure and behavior to the
throws clause for a method (§8.4.6).

8.8.6 The Type of a Constructor

The type of a constructor consists of its signature and the exception types given
by its throws clause.

8.8.7 Constructor Body

The first statement of a constructor body may be an explicit invocation of another
constructor of the same class or of the direct superclass (§8.8.7.1).

ConstructorBody:
{ [ExplicitConstructorInvocation] [BlockStatements] }

It is a compile-time error for a constructor to directly or indirectly invoke itself
through a series of one or more explicit constructor invocations involving this.

If a constructor body does not begin with an explicit constructor invocation and
the constructor being declared is not part of the primordial class object, then
the constructor body implicitly begins with a superclass constructor invocation
"super();", an invocation of the constructor of its direct superclass that takes no
arguments.

Except for the possibility of explicit constructor invocations, and the prohibition
on explicitly returning a value (§14.17), the body of a constructor is like the body
of a method (§8.4.7).

A return statement (§14.17) may be used in the body of a constructor if it does
not include an expression.

Example 8.8.7-1. Constructor Bodies

class Point {

int x, y;

Point(int x, int y) { this.x = x; this.y = y; }
}
class ColoredPoint extends Point {

static final int WHITE = 0, BLACK = 1;

int color;

ColoredPoint(int x, int y) {

this(x, y, WHITE);
}
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ColoredPoint(int x, int y, int color) {
super(x, y);
this.color = color;

}

Here, the first constructor of ColoredPoint invokes the second, providing an additional
argument; the second constructor of ColoredPoint invokes the constructor of its
superclass Point, passing along the coordinates.

8.8.7.1 Explicit Constructor Invocations

ExplicitConstructorInvocation:
[TypeArguments] this ( [ArgumentList] ) ;
[TypeArguments| super ( [ArgumentList] ) ;
ExpressionName . [TypeArguments| super ( [ArgumentList] ) ;
Primary . [TypeArguments] super ( [ArgumentList] ) ;

The following productions from §4.5.1 and §15.12 are shown here for convenience:

TypeArguments:
< TypeArgumentList >

ArgumentList:
Expression {, Expression}

Explicit constructor invocation statements are divided into two kinds:

* Alternate constructor invocations begin with the keyword this (possibly
prefaced with explicit type arguments). They are used to invoke an alternate
constructor of the same class.

* Superclass constructor invocations begin with either the keyword super
(possibly prefaced with explicit type arguments) or a Primary expression or an
ExpressionName. They are used to invoke a constructor of the direct superclass.
They are further divided:

— Ungqualified superclass constructor invocations begin with the keyword super
(possibly prefaced with explicit type arguments).

— Qualified superclass constructor invocations begin with a Primary expression
or an ExpressionName. They allow a subclass constructor to explicitly specify
the newly created object's immediately enclosing instance with respect to the
direct superclass (§8.1.3). This may be necessary when the superclass is an
inner class.

8.8
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An explicit constructor invocation statement in a constructor body may not refer
to any instance variables or instance methods or inner classes declared in this class
or any superclass, or use this or super in any expression; otherwise, a compile-
time error occurs.

This prohibition on using the current instance explains why an explicit constructor
invocation statement is deemed to occur in a static context (§8.1.3).

If TypeArguments is present to the left of this or super, then it is a compile-time
error if any of the type arguments are wildcards (§4.5.1).

Let c be the class being instantiated, and let s be the direct superclass of c.

If a superclass constructor invocation statement is unqualified, then:

 If sis an inner member class, but s is not a member of a lexically enclosing type
declaration of c, then a compile-time error occurs.

If a superclass constructor invocation statement is qualified, then:

¢ If sis not an inner class, or if the declaration of s occurs in a static context, then
a compile-time error occurs.

* Otherwise, let p be the Primary expression or the ExpressionName immediately
preceding ".super", and let o be the immediately enclosing class of s. It is a
compile-time error if the type of p is not o or a subclass of o, or if the type of
p 1s not accessible (§6.6).

The exception types that an explicit constructor invocation statement can throw are
specified in §11.2.2.

Evaluation of an alternate constructor invocation statement proceeds by first
evaluating the arguments to the constructor, left-to-right, as in an ordinary method
invocation; and then invoking the constructor.

Evaluation of a superclass constructor invocation statement proceeds as follows:

1. Let i be the instance being created. The immediately enclosing instance of i
with respect to s (if any) must be determined:

e If sis not an inner class, or if the declaration of s occurs in a static context,
then no immediately enclosing instance of i with respect to s exists.

* If the superclass constructor invocation is unqualified, then s is necessarily
a local class or an inner member class.

Let o be the immediately enclosing class of s, and let n be an integer such
that o is the n'th lexically enclosing type declaration of c.
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The immediately enclosing instance of i with respect to s is the n'th lexically
enclosing instance of this.

e If the superclass constructor invocation is qualified, then the Primary
expression or the ExpressionName immediately preceding ".super", p, is
evaluated.

If pevaluates tonull,aNullPointerException israised, and the superclass
constructor invocation completes abruptly.

Otherwise, the result of this evaluation is the immediately enclosing instance
of i with respect to s.

2. After determining the immediately enclosing instance of i with respect to s (if
any), evaluation of the superclass constructor invocation statement proceeds
by evaluating the arguments to the constructor, left-to-right, as in an ordinary
method invocation; and then invoking the constructor.

3. Finally, if the superclass constructor invocation statement completes normally,
then all instance variable initializers of ¢ and all instance initializers of c are
executed. If an instance initializer or instance variable initializer 1 textually
precedes another instance initializer or instance variable initializer J, then 1 is
executed before J.

Execution of instance variable initializers and instance initializers is performed
regardless of whether the superclass constructor invocation actually appears
as an explicit constructor invocation statement or is provided implicitly. (An
alternate constructor invocation does not perform this additional implicit
execution.)

Example 8.8.7.1-1. Restrictions on Explicit Constructor Invocation Statements

If the first constructor of ColoredPoint in the example from §8.8.7 were changed as
follows:

class Point {
int x, y;
Point(int x, int y) { this.x = x; this.y = y; }
}
class ColoredPoint extends Point {
static final int WHITE = 0, BLACK = 1;
int color;
ColoredPoint(int x, int y) {
this(x, y, color); // Changed to color from WHITE
}
ColoredPoint(int x, int y, int color) {
super(x, y);
this.color = color;
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then a compile-time error would occur, because the instance variable color cannot be used
by a explicit constructor invocation statement.

Example 8.8.7.1-2. Qualified Superclass Constructor Invocation

In the code below, ChildofInner has no lexically enclosing type declaration, so
an instance of ChildofInner has no enclosing instance. However, the superclass of
ChildofInner (Inner) has a lexically enclosing type declaration (Outer), and an
instance of Inner must have an enclosing instance of outer. The enclosing instance of
Outer is set when an instance of Inner is created. Therefore, when we create an instance of
ChildofInner, which is implicitly an instance of Inner, we must provide the enclosing
instance of outer via a qualified superclass invocation statement in ChildOfInner's
constructor. The instance of Outer is called the immediately enclosing instance of
ChildofInner with respect to Inner.

class Outer {
class Inner {}

}

class ChildOfInner extends Outer.Inner {
ChildOfInner() { (new Outer()).super(); }

Perhaps surprisingly, the same instance of Outer may serve as the immediately enclosing
instance of ChildOf Inner with respect to Inner for multiple instances of ChildofInner.
These instances of ChildofInner are implicitly linked to the same instance of Outer.
The program below achieves this by passing an instance of Outer to the constructor of
CchildofInner, which uses the instance in a qualified superclass constructor invocation
statement. The rules for an explicit constructor invocation statement do not prohibit using
formal parameters of the constructor that contains the statement.

class Outer {
int secret = 5;
class Inner {
int getSecret() { return secret; }
void setSecret(int s) { secret = s; }

}
class ChildOfInner extends Outer.Inner {
ChildOfInner(Outer x) { x.super(); }

public class Test {
public static void main(String[] args) {
Outer x = new Outer();
ChildOfInner a = new ChildOfInner(x);
ChildOfInner b = new ChildOfInner(x);
System.out.println(b.getSecret());
a.setSecret(6);
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System.out.println(b.getSecret());
}
This program produces the output:

5
6

The effect is that manipulation of instance variables in the common instance of Outer
is visible through references to different instances of ChildofInner, even though such
references are not aliases in the conventional sense.

8.8.8 Constructor Overloading

Overloading of constructors is identical in behavior to overloading of methods
(§8.4.9). The overloading is resolved at compile time by each class instance
creation expression (§15.9).

8.8.9 Default Constructor

If a class contains no constructor declarations, then a default constructor is
implicitly declared. The form of the default constructor for a top level class,
member class, or local class is as follows:

* The default constructor has the same accessibility as the class (§6.6).

* The default constructor has no formal parameters, except in a non-private
inner member class, where the default constructor implicitly declares one formal
parameter representing the immediately enclosing instance of the class (§8.8.1,
§159.2,§15.9.3).

¢ The default constructor has no throws clauses.

» If the class being declared is the primordial class object, then the default
constructor has an empty body. Otherwise, the default constructor simply
invokes the superclass constructor with no arguments.

The form of the default constructor for an anonymous class is specified in §15.9.5.1.

It is a compile-time error if a default constructor is implicitly declared but the
superclass does not have an accessible constructor that takes no arguments and has
no throws clause.

Example 8.8.9-1. Default Constructors

The declaration:

8.8
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public class Point {
int x, y;

}
is equivalent to the declaration:

public class Point {
int x, y;
public Point() { super(); }

where the default constructor is public because the class Point is public.
Example 8.8.9-2. Accessibility of Constructors v. Classes

The rule that the default constructor of a class has the same accessibility as the class itself
is simple and intuitive. Note, however, that this does not imply that the constructor is
accessible whenever the class is accessible. Consider:

package pl;
public class Outer {
protected class Inner {}

}
package p2;
class SonOfOuter extends pl.Outer {
void foo() {
new Inner(); // compile-time access error

}

The default constructor for Inner is protected. However, the constructor is protected
relative to Inner, while Inner is protected relative to Outer. So, Inner is accessible
in SonOfOuter, since it is a subclass of Outer. Inner's constructor is not accessible in
SonOfOuter, because the class SonOofouter is not a subclass of Inner! Hence, even
though Inner is accessible, its default constructor is not.

8.8.10 Preventing Instantiation of a Class

A class can be designed to prevent code outside the class declaration from creating
instances of the class by declaring at least one constructor, to prevent the creation
of a default constructor, and by declaring all constructors to be private.

A public class can likewise prevent the creation of instances outside its package
by declaring at least one constructor, to prevent creation of a default constructor
with public access, and by declaring no constructor that is public.

Example 8.8.10-1. Preventing Instantiation via Constructor Accessibility

class ClassOnly {
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private ClassOnly() { }
static String just = "only the lonely";

}

Here, the class ClassoOnly cannot be instantiated, while in the following code:

package just;
public class PackageOnly {
PackageOnly() { }
String[] justDesserts = { "cheesecake", "ice cream" };

}

the class PackageOnly can be instantiated only within the package just, in which it is
declared.

8.9 Enum Types

An enum declaration specifies a new enum type, a special kind of class type.

EnumDeclaration:
{ClassModifier} enum Identifier [Superinterfaces] EnumBody

It is a compile-time error if an enum declaration has the modifier abstract or
final.

An enum declaration is implicitly final unless it contains at least one enum
constant that has a class body (§8.9.1).

A nested enum type is implicitly static. It is permitted for the declaration of a
nested enum type to redundantly specify the static modifier.

This implies that it is impossible to declare an enum type in the body of an inner class
(§8.1.3), because an inner class cannot have static members except for constant variables.

It is a compile-time error if the same keyword appears more than once as a modifier
for an enum declaration.
The direct superclass of an enum type E is Enum<e> (§8.1.4).

An enum type has no instances other than those defined by its enum constants. It
is a compile-time error to attempt to explicitly instantiate an enum type (§15.9.1).

In addition to the compile-time error, three further mechanisms ensure that no instances of
an enum type exist beyond those defined by its enum constants:

¢ The final clone method in Enum ensures that enum constants can never be cloned.
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* Reflective instantiation of enum types is prohibited.

* Special treatment by the serialization mechanism ensures that duplicate instances are
never created as a result of deserialization.

8.9.1 Enum Constants

The body of an enum declaration may contain enum constants. An enum constant
defines an instance of the enum type.

EnumBody:
{ [EnumConstantList] [, ] [EnumBodyDeclarations] }

EnumConstantList:
EnumConstant {, EnumConstant}

EnumConstant:
{EnumConstantModifier} Identifier [ ( [ArgumentList] )] [ClassBody]

EnumConstantModifier:
Annotation

The following production from §15.12 is shown here for convenience:

ArgumentList:
Expression {, Expression}

The rules for annotation modifiers on an enum constant declaration are specified
in §9.7.4 and §9.7.5.

The Identifier in a EnumConstant may be used in a name to refer to the enum
constant.

The scope and shadowing of an enum constant is specified in §6.3 and §6.4.

An enum constant may be followed by arguments, which are passed to the
constructor of the enum when the constant is created during class initialization as
described later in this section. The constructor to be invoked is chosen using the
normal rules of overload resolution (§15.12.2). If the arguments are omitted, an
empty argument list is assumed.

The optional class body of an enum constant implicitly defines an anonymous class
declaration (§15.9.5) that extends the immediately enclosing enum type. The class
body is governed by the usual rules of anonymous classes; in particular it cannot
contain any constructors. Instance methods declared in these class bodies may be
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invoked outside the enclosing enum type only if they override accessible methods
in the enclosing enum type (§8.4.8).

It is a compile-time error for the class body of an enum constant to declare an
abstract method.

Because there is only one instance of each enum constant, it is permitted to use the
== operator in place of the equals method when comparing two object references
if it is known that at least one of them refers to an enum constant.

The equals method in Enum is a £inal method that merely invokes super.equals on
its argument and returns the result, thus performing an identity comparison.

8.9.2 Enum Body Declarations

In addition to enum constants, the body of an enum declaration may contain
constructor and member declarations as well as instance and static initializers.

EnumBodyDeclarations:
; {ClassBodyDeclaration}

The following productions from §8.1.6 are shown here for convenience:

ClassBodyDeclaration:
ClassMemberDeclaration
Instancelnitializer
Staticlnitializer
ConstructorDeclaration

ClassMemberDeclaration:
FieldDeclaration
MethodDeclaration
ClassDeclaration
InterfaceDeclaration

4

Any constructor or member declarations in the body of an enum declaration apply
to the enum type exactly as if they had been present in the body of a normal class
declaration, unless explicitly stated otherwise.

It is a compile-time error if a constructor declaration in an enum declaration is
public or protected (§6.6).

It is a compile-time error if a constructor declaration in an enum declaration
contains a superclass constructor invocation statement (§8.8.7.1).
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It is a compile-time error to reference a static field of an enum type from
constructors, instance initializers, or instance variable initializer expressions of the
enum type, unless the field is a constant variable (§4.12.4).

In an enum declaration, a constructor declaration with no access modifiers is
private.

In an enum declaration with no constructor declarations, a default constructor is
implicitly declared. The default constructor is private, has no formal parameters,
and has no throws clause.

In practice, a compiler is likely to mirror the Enum type by declaring String and int
parameters in the default constructor of an enum type. However, these parameters are not
specified as "implicitly declared" because different compilers do not need to agree on the
form of the default constructor. Only the compiler of an enum type knows how to instantiate
the enum constants; other compilers can simply rely on the implicitly declared public
static fields of the enum type (§8.9.3) without regard for how those fields were initialized.

It is a compile-time error if an enum declaration £ has an abstract method mas a
member, unless E has at least one enum constant and all of £'s enum constants have
class bodies that provide concrete implementations of m.

It is a compile-time error for an enum declaration to declare a finalizer (§12.6). An
instance of an enum type may never be finalized.

Example 8.9.2-1. Enum Body Declarations

enum Coin {
PENNY (1), NICKEL(5), DIME(10), QUARTER(25);
Coin(int value) { this.value = value; }

private final int value;
public int value() { return value; }

Each enum constant arranges for a different value in the field value, passed in via a
constructor. The field represents the value, in cents, of an American coin. Note that there
are no restrictions on the parameters that may be declared by an enum type's constructor.

Example 8.9.2-2. Restriction On Enum Constant Self-Reference

Without the rule on static field access, apparently reasonable code would fail at run time
due to the initialization circularity inherent in enum types. (A circularity exists in any class
with a "self-typed" static field.) Here is an example of the sort of code that would fail:

import java.util.Map;
import java.util.HashMap;

enum Color {
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RED, GREEN, BLUE;
Color() { colorMap.put(toString(), this); }

static final Map<String,Color> colorMap =
new HashMap<String,Color>();

Static initialization of this enum would throw a NullPointerException because the
static variable colorMap is uninitialized when the constructors for the enum constants
run. The restriction above ensures that such code cannot be compiled. However, the code
can easily be refactored to work properly:

import java.util.Map;
import java.util.HashMap;

enum Color {
RED, GREEN, BLUE;

static final Map<String,Color> colorMap =
new HashMap<String,Color>();
static {
for (Color c : Color.values())
colorMap.put(c.toString(), c);

The refactored version is clearly correct, as static initialization occurs top to bottom.

8.9.3 Enum Members

The members of an enum type £ are all of the following:
* Members declared in the body of the declaration of E.
e Members inherited from Enum<z>.

* For each enum constant ¢ declared in the body of the declaration of E, E has an
implicitly declared public static £final field of type E that has the same name
as c. The field has a variable initializer consisting of ¢, and is annotated by the
same annotations as c.

These fields are implicitly declared in the same order as the corresponding
enum constants, before any static fields explicitly declared in the body of the
declaration of E.

An enum constant is said to be created when the corresponding implicitly
declared field is initialized.

* The following implicitly declared methods:
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[ **

Returns an array containing the constants of this enum
type, in the order they're declared. This method may be
used to iterate over the constants as follows:

*
*
*
*
* for(E c : E.values())

* System.out.println(c);

*

* @return an array containing the constants of this enum
* type, in the order they're declared

*/

public static E[] values();

[ **

* Returns the enum constant of this type with the specified

* name.

* The string must match exactly an identifier used to declare
* an enum constant in this type. (Extraneous whitespace

* characters are not permitted.)

*

* @return the enum constant with the specified name

*

@throws IllegalArgumentException if this enum type has no
constant with the specified name

*

*/

public static E valueOf(String name);

It follows that the declaration of enum type E cannot contain fields that conflict with the
implicitly declared fields corresponding to E's enum constants, nor contain methods that
conflict with implicitly declared methods or override £inal methods of class Enum<Eg>.

Example 8.9.3-1. Iterating Over Enum Constants With An Enhanced for Loop

public class Test {
enum Season { WINTER, SPRING, SUMMER, FALL }

public static void main(String[] args) {
for (Season s : Season.values())
System.out.println(s);

This program produces the output:

WINTER
SPRING
SUMMER
FALL
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Example 8.9.3-2. Switching Over Enum Constants

A switch statement (§14.11) is useful for simulating the addition of a method to an enum
type from outside the type. This example "adds" a color method to the Coin type from
§8.9.2, and prints a table of coins, their values, and their colors.

class Test {
enum CoinColor { COPPER, NICKEL, SILVER }

static CoinColor color(Coin c) {
switch (c) {
case PENNY:
return CoinColor.COPPER;
case NICKEL:
return CoinColor.NICKEL;
case DIME: case QUARTER:
return CoinColor.SILVER;
default:
throw new AssertionError("Unknown coin: " + c);

public static void main(String[] args) {
for (Coin ¢ : Coin.values())
System.out.println(c + "\t\t" +
c.value() + "\t" + color(c));

This program produces the output:

PENNY 1 COPPER
NICKEL 5 NICKEL
DIME 10 SILVER
QUARTER 25 SILVER

Example 8.9.3-3. Enum Constants with Class Bodies

enum Operation {
PLUS {
double eval(double x, double y) { return x + y; }

Y
MINUS {

double eval(double x, double y) { return x - y; }
Y
TIMES {

double eval(double x, double y) { return x * y; }
Y

DIVIDED_BY {
double eval(double x, double y) { return x / y; }

}i

8.9
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// Each constant supports an arithmetic operation
abstract double eval(double x, double y);

public static void main(String args[]) {
double x = Double.parseDouble(args[0]);
double y = Double.parseDouble(args[1l]);
for (Operation op : Operation.values())
System.out.println(x + " " + op + " " +y +

= + op.eval(x, v));

Class bodies attach behaviors to the enum constants. The program produces the output:

java Operation 2.0 4.0
2.0 PLUS 4.0 = 6.0

2.0 MINUS 4.0 = -2.0

2.0 TIMES 4.0 = 8.0

2.0 DIVIDED BY 4.0 = 0.5

This pattern is much safer than using a switch statement in the base type (Operation),
as the pattern precludes the possibility of forgetting to add a behavior for a new constant
(since the enum declaration would cause a compile-time error).

Example 8.9.3-4. Multiple Enum Types

In the following program, a playing card class is built atop two simple enums.

import java.util.List;
import java.util.ArrayList;
class Card implements Comparable<Card>,
java.io.Serializable {
public enum Rank { DEUCE, THREE, FOUR, FIVE, SIX, SEVEN,
EIGHT, NINE, TEN,JACK, QUEEN, KING, ACE }

public enum Suit { CLUBS, DIAMONDS, HEARTS, SPADES }

private final Rank rank;
private final Suit suit;
public Rank rank() { return rank; }
public Suit suit() { return suit; }

private Card(Rank rank, Suit suit) {
if (rank == null || suit == null)
throw new NullPointerException(rank + ", " + suit);
this.rank = rank;
this.suit = suit;

public String toString() { return rank + " of " + suit; }
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// Primary sort on suit, secondary sort on rank
public int compareTo(Card c) {
int suitCompare = suit.compareTo(c.suit);
return (suitCompare != 0 ?
suitCompare :
rank.compareTo(c.rank));

private static final List<Card> prototypeDeck =
new ArrayList<Card>(52);

static {
for (Suit suit : Suit.values())
for (Rank rank : Rank.values())
prototypeDeck.add(new Card(rank, suit));

// Returns a new deck
public static List<Card> newDeck() {
return new ArrayList<Card>(prototypeDeck);

The following program exercises the Card class. It takes two integer parameters on the
command line, representing the number of hands to deal and the number of cards in each

hand:

import java.util.List;

import java.util.ArrayList;
import java.util.Collections;
class Deal {

public static void main(String args[]) {
int numHands Integer.parselnt(args[0]);
int cardsPerHand = Integer.parselnt(args[l]);
List<Card> deck = Card.newDeck();
Collections.shuffle(deck);
for (int i=0; i < numHands; i++)
System.out.println(dealHand(deck, cardsPerHand));

* Returns a new ArrayList consisting of the last n
* elements of deck, which are removed from deck.
* The returned list is sorted using the elements'
* natural ordering.
*/
public static <E extends Comparable<E>>
ArrayList<E> dealHand(List<E> deck, int n) {
int deckSize = deck.size();
List<E> handView = deck.subList(deckSize - n, deckSize);
ArrayList<E> hand = new ArrayList<E>(handView);
handview.clear();
Collections.sort(hand);

8.9
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return hand;

The program produces the output:

java Deal 4 3

[DEUCE of CLUBS, SEVEN of CLUBS, QUEEN of DIAMONDS]
[NINE of HEARTS, FIVE of SPADES, ACE of SPADES]
[THREE of HEARTS, SIX of HEARTS, TEN of SPADES]
[TEN of CLUBS, NINE of DIAMONDS, THREE of SPADES]
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Interfaces

AN interface declaration introduces a new reference type whose members are
classes, interfaces, constants, and methods. This type has no instance variables, and
typically declares one or more abstract methods; otherwise unrelated classes can
implement the interface by providing implementations for its abstract methods.
Interfaces may not be directly instantiated.

A nested interface is any interface whose declaration occurs within the body of
another class or interface.

A top level interface is an interface that is not a nested interface.

We distinguish between two kinds of interfaces - normal interfaces and annotation
types.

This chapter discusses the common semantics of all interfaces - normal interfaces,
both top level (§7.6) and nested (§8.5, §9.5), and annotation types (§9.6). Details
that are specific to particular kinds of interfaces are discussed in the sections
dedicated to these constructs.

Programs can use interfaces to make it unnecessary for related classes to share a
common abstract superclass or to add methods to object.

An interface may be declared to be a direct extension of one or more other
interfaces, meaning that it inherits all the member types, instance methods, and
constants of the interfaces it extends, except for any members that it may override
or hide.

A class may be declared to directly implement one or more interfaces, meaning
that any instance of the class implements all the abstract methods specified
by the interface or interfaces. A class necessarily implements all the interfaces
that its direct superclasses and direct superinterfaces do. This (multiple) interface
inheritance allows objects to support (multiple) common behaviors without sharing
a superclass.
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A variable whose declared type is an interface type may have as its value a
reference to any instance of a class which implements the specified interface. It is
not sufficient that the class happen to implement all the abstract methods of the
interface; the class or one of its superclasses must actually be declared to implement
the interface, or else the class is not considered to implement the interface.

9.1 Interface Declarations

An interface declaration specifies a new named reference type. There are two
kinds of interface declarations - normal interface declarations and annotation type
declarations (§9.6).

InterfaceDeclaration:
NormallnterfaceDeclaration
AnnotationTypeDeclaration

NormallnterfaceDeclaration:
{InterfaceModifier} interface Identifier [TypeParameters]
[ExtendslInterfaces] InterfaceBody

The Identifier in an interface declaration specifies the name of the interface.

It is a compile-time error if an interface has the same simple name as any of its
enclosing classes or interfaces.

The scope and shadowing of an interface declaration is specified in §6.3 and §6.4.

9.1.1 Interface Modifiers

An interface declaration may include interface modifiers.

InterfaceModifier:
(one of)

Annotation public protected private
abstract static strictfp

The rules for annotation modifiers on an interface declaration are specified in §9.7 .4
and §9.7.5.

The access modifier public (§6.6) pertains to every kind of interface declaration.
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The access modifiers protected and private pertain only to member interfaces
whose declarations are directly enclosed by a class declaration (§8.5.1).

The modifier static pertains only to member interfaces (§8.5.1, §9.5), not to top
level interfaces (§7.6).

It is a compile-time error if the same keyword appears more than once as a modifier
for an interface declaration.

If two or more (distinct) interface modifiers appear in an interface declaration, then it is
customary, though not required, that they appear in the order consistent with that shown
above in the production for InterfaceModifier.

9.1.1.1 abstract Interfaces

Every interface is implicitly abstract.

This modifier is obsolete and should not be used in new programs.

9.1.1.2 strictfp Interfaces

The effect of the strictfp modifier is to make all £loat or double expressions
within the interface declaration be explicitly FP-strict (§15.4).

This implies that all methods declared in the interface, and all nested types declared
in the interface, are implicitly strictfp.

9.1.2 Generic Interfaces and Type Parameters

An interface is generic if it declares one or more type variables (§4 .4).

These type variables are known as the type parameters of the interface. The type
parameter section follows the interface name and is delimited by angle brackets.

The following productions from §8.1.2 and §4.4 are shown here for convenience:

TypeParameters:
< TypeParameterList >

TypeParameterList:
TypeParameter { , TypeParameter}

TypeParameter:
{TypeParameterModifier} Identifier [TypeBound]

TypeParameterModifier:
Annotation
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TypeBound.:
extends TypeVariable
extends ClassOrlinterfaceType {AdditionalBound}

AdditionalBound.:
& InterfaceType

The rules for annotation modifiers on a type parameter declaration are specified
in §9.7.4 and §9.7.5.

In an interface's type parameter section, a type variable T directly depends on a
type variable s if s is the bound of 7, while T depends on s if either T directly
depends on s or Tdirectly depends on a type variable uthat depends on s (using this
definition recursively). It is a compile-time error if a type variable in a interface's
type parameter section depends on itself.

The scope and shadowing of an interface's type parameter is specified in §6.3.

It is a compile-time error to refer to a type parameter of an interface r anywhere in
the declaration of a field or type member of I.

A generic interface declaration defines a set of parameterized types (§4.5), one for
each possible parameterization of the type parameter section by type arguments.
All of these parameterized types share the same interface at run time.

9.1.3 Superinterfaces and Subinterfaces

If an extends clause is provided, then the interface being declared extends each of
the other named interfaces and therefore inherits the member types, methods, and
constants of each of the other named interfaces.

These other named interfaces are the direct superinterfaces of the interface being
declared.

Any class that implements the declared interface is also considered to implement
all the interfaces that this interface extends.

ExtendsiInterfaces:
extends InterfaceTypeList

The following production from §8.1.5 is shown here for convenience:

InterfaceTypelList:
InterfaceType {, InterfaceType}

Each InterfaceType in the extends clause of an interface declaration must name
an accessible interface type (§6.6), or a compile-time error occurs.
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If an InterfaceType has type arguments, it must denote a well-formed parameterized
type (§4.5), and none of the type arguments may be wildcard type arguments, or
a compile-time error occurs.

Given a (possibly generic) interface declaration 1<Fy,....F,> (n = 0), the direct
superinterfaces of the interface type 1<F;,...,F,> are the types given in the extends
clause of the declaration of 1, if an extends clause is present.

Given a generic interface declaration 1<F;,...,F,> (n>0), the direct superinterfaces
of the parameterized interface type 1<7y,...,T,>, where T; (1 <i < n) is a type, are
all types J<u; 0,...,Ux 0>, where J<uy,...,Ux> is a direct superinterface of 1<Fj,...,F,>
and 0O is the substitution [F;:=T;, ..., Fa:=Ty].

The superinterface relationship is the transitive closure of the direct superinterface
relationship. An interface x is a superinterface of interface 1 if either of the
following is true:

* kis a direct superinterface of I1.

* There exists an interface J such that x is a superinterface of J, and J is a
superinterface of 1, applying this definition recursively.

Interface 1 is said to be a subinterface of interface x whenever x is a superinterface
of 1.

While every class is an extension of class object, there is no single interface of
which all interfaces are extensions.

An interface 1 directly depends on a type Tif Tis mentioned in the extends clause
of 1 either as a superinterface or as a qualifier in the fully qualified form of a
superinterface name.

An interface 1 depends on a reference type T if any of the following is true:
» 1 directly depends on T.
» 1 directly depends on a class c that depends on 7 (§8.1.5).

1 directly depends on an interface s that depends on T (using this definition
recursively).

It is a compile-time error if an interface depends on itself.

If circularly declared interfaces are detected at run time, as interfaces are loaded,
then a classCircularityError is thrown (§12.2.1).
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9.14 Interface Body and Member Declarations

The body of an interface may declare members of the interface, that is, fields (§9.3),
methods (§9.4), classes (§9.5), and interfaces (§9.5).

InterfaceBody:
{ {InterfaceMemberDeclaration} }

InterfaceMemberDeclaration:
ConstantDeclaration
InterfaceMethodDeclaration
ClassDeclaration
InterfaceDeclaration

.
r

The scope of a declaration of a member m declared in or inherited by an interface
type I is specified in §6.3.

9.2 Interface Members

The members of an interface type are:
* Members declared in the body of the interface (§9.1.4).
* Members inherited from any direct superinterfaces (§9.1.3).

* If an interface has no direct superinterfaces, then the interface implicitly declares
apublic abstract member method m with signature s, return type r,and throws
clause t corresponding to each public instance method m with signature s, return
type r, and throws clause t declared in object, unless an abstract method
with the same signature, same return type, and a compatible throws clause is
explicitly declared by the interface.

It is a compile-time error if the interface explicitly declares such a method m in
the case where mis declared to be final in Object.

It is a compile-time error if the interface explicitly declares a method with a
signature that is override-equivalent (§8.4.2) to a public method of object, but
which has a different return type, or an incompatible throws clause, or is not
abstract.
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The interface inherits, from the interfaces it extends, all members of those
interfaces, except for fields, classes, and interfaces that it hides; abstract or default
methods that it overrides (§9.4.1); and static methods.

Fields, methods, and member types of an interface type may have the same name,
since they are used in different contexts and are disambiguated by different lookup
procedures (§6.5). However, this is discouraged as a matter of style.

9.3 Field (Constant) Declarations

ConstantDeclaration:
{ConstantModifier} UnannType VariableDeclaratorList ;

ConstantModifier:
(one of)
Annotation public
static final

See §8.3 for UnannType. The following productions from §4.3 and §8.3 are shown here
for convenience:

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorld [= Variablelnitializer]

VariableDeclaratorld:
Identifier [Dims]

Dims:
{Annotation} [ ] {{Annotation} [ 1}

Variablelnitializer:
Expression
Arraylnitializer

The rules for annotation modifiers on an interface field declaration are specified
in §9.7.4 and §9.7.5.

Every field declaration in the body of an interface is implicitly public, static,
and final. It is permitted to redundantly specify any or all of these modifiers for
such fields.

9.3
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It is a compile-time error if the same keyword appears more than once as a modifier
for a field declaration.

If two or more (distinct) field modifiers appear in a field declaration, it is customary, though
not required, that they appear in the order consistent with that shown above in the production
for ConstantModifier.

The declared type of a field is denoted by UnannType if no bracket pairs appear in
UnannType and VariableDeclaratorld, and is specified by §10.2 otherwise.

The scope and shadowing of an interface field declaration is specified in §6.3 and
§6.4.

It is a compile-time error for the body of an interface declaration to declare two
fields with the same name.

If the interface declares a field with a certain name, then the declaration of that field
is said to hide any and all accessible declarations of fields with the same name in
superinterfaces of the interface.

It is possible for an interface to inherit more than one field with the same name.
Such a situation does not in itself cause a compile-time error. However, any attempt
within the body of the interface to refer to any such field by its simple name will
result in a compile-time error, because such a reference is ambiguous.

There might be several paths by which the same field declaration might be inherited
from an interface. In such a situation, the field is considered to be inherited only
once, and it may be referred to by its simple name without ambiguity.

Example 9.3-1. Ambiguous Inherited Fields

If two fields with the same name are inherited by an interface because, for example, two
of its direct superinterfaces declare fields with that name, then a single ambiguous member
results. Any use of this ambiguous member will result in a compile-time error. In the
program:

interface BaseColors {
int RED = 1, GREEN = 2, BLUE = 4;
}
interface RainbowColors extends BaseColors {
int YELLOW = 3, ORANGE = 5, INDIGO = 6, VIOLET = 7;
}
interface PrintColors extends BaseColors {
int YELLOW = 8, CYAN = 16, MAGENTA = 32;
}
interface LotsOfColors extends RainbowColors, PrintColors {
int FUCHSIA = 17, VERMILION = 43, CHARTREUSE = RED+90;
}
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the interface LotsOfColors inherits two fields named YELLOW. This is all right as long as
the interface does not contain any reference by simple name to the field YELLOW. (Such a
reference could occur within a variable initializer for a field.)

Even if interface PrintColors were to give the value 3 to YELLOW rather than the value
8, a reference to field YELLOW within interface LotsOfColors would still be considered
ambiguous.

Example 9.3-2. Multiply Inherited Fields

If a single field is inherited multiple times from the same interface because, for example,
both this interface and one of this interface's direct superinterfaces extend the interface that
declares the field, then only a single member results. This situation does not in itself cause
a compile-time error.

In the previous example, the fields RED, GREEN, and BLUE are inherited by interface
LotsOfColors in more than one way, through interface RainbowColors and also through
interface PrintColors, but the reference to field RED in interface LotsOfColors is not
considered ambiguous because only one actual declaration of the field RED is involved.

9.3.1 Initialization of Fields in Interfaces

Every declarator in a field declaration of an interface must have a variable
initializer, or a compile-time error occurs.

The initializer need not be a constant expression (§15.28).

It is a compile-time error if the initializer of an interface field uses the simple name
of the same field or another field whose declaration occurs textually later in the
same interface.

It is a compile-time error if the keyword this (§15.8.3) or the keyword super
(§15.11.2, §15.12) occurs in the initializer of an interface field, unless the
occurrence is within the body of an anonymous class (§15.9.5).

At run time, the initializer is evaluated and the field assignment performed exactly
once, when the interface is initialized (§12.4.2).

Note that interface fields that are constant variables (§4.12.4) are initialized before
other interface fields. This also applies to static fields that are constant variables
in classes (§8.3.2). Such fields will never be observed to have their default initial
values (§4.12.5), even by devious programs.

Example 9.3.1-1. Forward Reference to a Field

interface Test {
float £ = j;
int j=1;
int k =%k + 1;

9.3
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}

This program causes two compile-time errors, because j is referred to in the initialization
of £ before j is declared, and because the initialization of k refers to k itself.

9.4 Method Declarations

InterfaceMethodDeclaration:
{InterfaceMethodModifier} MethodHeader MethodBody

InterfaceMethodModifier:
(one of)
Annotation public
abstract default static strictfp

The following productions from §8.4, §8.4.5, and §8.4.7 are shown here for convenience:

MethodHeader:
Result MethodDeclarator [Throws]
TypeParameters { Annotation} Result MethodDeclarator [Throws]

Result:
UnannType
void

MethodDeclarator:
Identifier ( [FormalParameterList] ) [Dims]

MethodBody:
Block

r

The rules for annotation modifiers on an interface method declaration are specified
in §9.7.4 and §9.7.5.

Every method declaration in the body of an interface is implicitly public (§6.6). It
is permitted, but discouraged as a matter of style, to redundantly specify the public
modifier for a method declaration in an interface.

A default method is a method that is declared in an interface with the default
modifier; its body is always represented by a block. It provides a default
implementation for any class that implements the interface without overriding the
method. Default methods are distinct from concrete methods (§8.4.3.1), which are
declared in classes.
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An interface can declare static methods, which are invoked without reference to
a particular object.

It is a compile-time error to use the name of a type parameter of any surrounding
declaration in the header or body of a static method of an interface.

The effect of the strictfp modifier is to make all £loat or double expressions
within the body of a default or static method be explicitly FP-strict (§15.4).

An interface method lacking a default modifier or a static modifier is implicitly
abstract, so its body is represented by a semicolon, not a block. It is permitted,
but discouraged as a matter of style, to redundantly specify the abstract modifier
for such a method declaration.

It is a compile-time error if the same keyword appears more than once as a modifier
for a method declaration in an interface.

Itis a compile-time error if a method is declared with more than one of the modifiers
abstract,default, Or static.

It is a compile-time error if an abstract method declaration contains the keyword
strictfp.

It is a compile-time error for the body of an interface to declare, explicitly or
implicitly, two methods with override-equivalent signatures (§8.4.2). However, an
interface may inherit several abstract methods with such signatures (§9.4.1).

A method in an interface may be generic. The rules for type parameters of a generic
method in an interface are the same as for a generic method in a class (§8.4.4).

94.1 Inheritance and Overriding

An interface I inherits from its direct superinterfaces all abstract and default
methods m for which all of the following are true:

* mis a member of a direct superinterface, J, of 1.

* No method declared in 1 has a signature that is a subsignature (§8.4.2) of the
signature of m.

* There exists no method m' that is a member of a direct superinterface, J', of 1 (m
distinct from m', 5 distinct from J'), such that m' overrides from J' the declaration
of the method m.

Note that methods are overridden on a signature-by-signature basis. If, for example, an
interface declares two public methods with the same name (§9.4.2), and a subinterface
overrides one of them, the subinterface still inherits the other method.

94
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The third clause above prevents a subinterface from re-inheriting a method that has already
been overridden by another of its superinterfaces. For example, in this program:

interface Top {
default String name() { return "unnamed"; }

}
interface Left extends Top {
default String name() { return getClass().getName(); }

}
interface Right extends Top {}

interface Bottom extends Left, Right {}

Right inherits name () from Top, but Bottom inherits name () from Left, not Right
This is because name () from Left overrides the declaration of name () in Top.

An interface does not inherit static methods from its superinterfaces.

If an interface 1 declares a static method m, and the signature of mis a subsignature
of an instance method m' in a superinterface of 1, and m' would otherwise be
accessible to code in 1, then a compile-time error occurs.

In essence, a static method in an interface cannot "hide" an instance method in a
superinterface. This is similar to the rule in §8.4.8.2 whereby a static method in a class
cannot hide an instance method in a superclass or superinterface. Note that the rule in
§8.4.8.2 speaks of a class that "declares or inherits a static method", whereas the rule
above speaks only of an interface that "declares a static method", since an interface
cannot inherit a static method. Also note that the rule in §8.4.8.2 allows hiding of
both instance and static methods in superclasses/superinterfaces, whereas the rule above
considers only instance methods in superinterfaces.

94.1.1 Overriding (by Instance Methods)

An instance method m;, declared in or inherited by an interface 1, overrides from
I another instance method, m,, declared in interface 7, iff both of the following are
true:

* Iis a subinterface of J.
* The signature of m; is a subsignature (§8.4.2) of the signature of m;.

The presence or absence of the strictfp modifier has absolutely no effect on the
rules for overriding methods. For example, it is permitted for a method that is not
FP-strict to override an FP-strict method and it is permitted for an FP-strict method
to override a method that is not FP-strict.

An overridden default method can be accessed by using a method invocation expression
(§15.12) that contains the keyword super qualified by a superinterface name.
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94.1.2 Requirements in Overriding

The relationship between the return type of an interface method and the return types
of any overridden interface methods is specified in §8.4.8.3.

The relationship between the throws clause of an interface method and the throws
clauses of any overridden interface methods are specified in §8.4.8.3.

The relationship between the signature of an interface method and the signatures
of overridden interface methods are specified in §8.4.8.3.

It is a compile-time error if a default method is override-equivalent with a non-
private method of the class object, because any class implementing the interface
will inherit its own implementation of the method.

The prohibition against declaring one of the Object methods as a default method may
be surprising. There are, after all, cases like java.util.List in which the behavior of
tostring and equals are precisely defined. The motivation becomes clearer, however,
when some broader design decisions are understood:

* First, methods inherited from a superclass are allowed to override methods inherited
from superinterfaces (§8.4.8.1). So, every implementing class would automatically
override an interface's toString default. This is longstanding behavior in the Java
programming language. It is not something we wish to change with the design of
default methods, because that would conflict with the goal of allowing interfaces to
unobtrusively evolve, only providing default behavior when a class doesn't already have
it through the class hierarchy.

* Second, interfaces do not inherit from Object, but rather implicitly declare many of the
same methods as object (§9.2). So, there is no common ancestor for the toString
declared in Object and the toString declared in an interface. At best, if both were
candidates for inheritance by a class, they would conflict. Working around this problem
would require awkward commingling of the class and interface inheritance trees.

e Third, use cases for declaring Object methods in interfaces typically assume a linear
interface hierarchy; the feature does not generalize very well to multiple inheritance
scenarios.

e Fourth, the object methods are so fundamental that it seems dangerous to allow an
arbitrary superinterface to silently add a default method that changes their behavior.

An interface is free, however, to define another method that provides behavior useful for
classes that override the Object methods. For example, the java.util.List interface
could declare an elementString method that produces the string described by the contract
of tostring; implementors of toString in classes could then delegate to this method.

9.4.1.3 Inheriting Methods with Override-Equivalent Signatures

It is possible for an interface to inherit several methods with override-equivalent
signatures (§8.4.2).
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If an interface 1 inherits a default method whose signature is override-equivalent
with another method inherited by 1, then a compile-time error occurs. (This is the
case whether the other method is abstract or default.)

Otherwise, all the inherited methods are abstract, and the interface is considered
to inherit all the methods.

One of the inherited methods must be return-type-substitutable for every other
inherited method, or else a compile-time error occurs. (The throws clauses do not
cause errors in this case.)

There might be several paths by which the same method declaration is inherited
from an interface. This fact causes no difficulty and never, of itself, results in a
compile-time error.

Naturally, when two different default methods with matching signatures are inherited by a
subinterface, there is a behavioral conflict. We actively detect this conflict and notify the
developer with an error, rather than waiting for the problem to arise when a concrete class
is compiled. The error can be avoided by declaring a new method that overrides, and thus
prevents the inheritance of, all conflicting methods.

Similarly, when an abstract and a default method with matching signatures are inherited,
we produce an error. In this case, it would be possible to give priority to one or the other
- perhaps we would assume that the default method provides a reasonable implementation
for the abstract method, too. But this is risky, since other than the coincidental name and
signature, we have no reason to believe that the default method behaves consistently with
the abstract method's contract - the default method may not have even existed when the
subinterface was originally developed. It is safer in this situation to ask the user to actively
assert that the default implementation is appropriate (via an overriding declaration).

In contrast, the longstanding behavior for inherited concrete methods in classes is that they
override abstract methods declared in interfaces (see §8.4.8). The same argument about
potential contract violation applies here, but in this case there is an inherent imbalance
between classes and interfaces. We prefer, in order to preserve the independent nature of
class hierarchies, to minimize class-interface clashes by simply giving priority to concrete
methods.

94.2 Overloading

If two methods of an interface (whether both declared in the same interface, or both
inherited by an interface, or one declared and one inherited) have the same name
but different signatures that are not override-equivalent (§8.4.2), then the method
name is said to be overloaded.

This fact causes no difficulty and never of itself results in a compile-time error.
There is no required relationship between the return types or between the throws
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clauses of two methods with the same name but different signatures that are not
override-equivalent.

Example 9.4.2-1. Overloading an abstract Method Declaration

interface PointInterface {
void move(int dx, int dy);

}

interface RealPointInterface extends PointInterface {
void move(float dx, float dy);
void move(double dx, double dy);

}

Here, the method named move is overloaded in interface RealPointInterface with three
different signatures, two of them declared and one inherited. Any non-abstract class that
implements interface RealPointInterface must provide implementations of all three
method signatures.

9.4.3 Interface Method Body

A default method has a block body. This block of code provides an implementation
of the method in the event that a class implements the interface but does not provide
its own implementation of the method.

A static method also has a block body, which provides the implementation of
the method.

It is a compile-time error if an interface method declaration is abstract (explicitly
or implicitly) and has a block for its body.

It is a compile-time error if an interface method declaration is default or static
and has a semicolon for its body.

It is a compile-time error for the body of a static method to attempt to reference
the current object using the keyword this or the keyword super.

The rules for return statements in a method body are specified in §14.17.

If a method is declared to have a return type (§8.4.5), then a compile-time error
occurs if the body of the method can complete normally (§14.1).

9.5 Member Type Declarations

Interfaces may contain member type declarations (§8.5).

9.5
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A member type declaration in an interface is implicitly public and static. It is
permitted to redundantly specify either or both of these modifiers.

It is a compile-time error if a member type declaration in an interface has the
modifier protected or private.

It is a compile-time error if the same keyword appears more than once as a modifier
for a member type declaration in an interface.

If an interface declares a member type with a certain name, then the declaration of
that type is said to hide any and all accessible declarations of member types with
the same name in superinterfaces of the interface.

An interface inherits from its direct superinterfaces all the non-private member
types of the superinterfaces that are both accessible to code in the interface and not
hidden by a declaration in the interface.

An interface may inherit two or more type declarations with the same name. It
is a compile-time error to attempt to refer to any ambiguously inherited class or
interface by its simple name.

If the same type declaration is inherited from an interface by multiple paths, the
class or interface is considered to be inherited only once; it may be referred to by
its simple name without ambiguity.

9.6 Annotation Types

An annotation type declaration specifies a new annotation type, a special kind
of interface type. To distinguish an annotation type declaration from a normal
interface declaration, the keyword interface is preceded by an at-sign (@).

AnnotationTypeDeclaration:
{InterfaceModifier} @ interface Identifier AnnotationTypeBody

Note that the at-sign (@) and the keyword interface are distinct tokens. It is possible to
separate them with whitespace, but this is discouraged as a matter of style.

The rules for annotation modifiers on an annotation type declaration are specified
in §9.7.4 and §9.7.5.

The Identifier in an annotation type declaration specifies the name of the annotation
type.
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It is a compile-time error if an annotation type has the same simple name as any
of its enclosing classes or interfaces.

The direct superinterface of every annotation type is

java.lang.annotation.Annotation.

By virtue of the AnnotationTypeDeclaration syntax, an annotation type declaration cannot
be generic, and no extends clause is permitted.

A consequence of the fact that an annotation type cannot explicitly declare a superclass
or superinterface is that a subclass or subinterface of an annotation type is never itself
an annotation type. Similarly, java.lang.annotation.Annotation is not itself an
annotation type.

An annotation type inherits several members from
java.lang.annotation.Annotation, including the implicitly declared methods
corresponding to the instance methods of object, yet these methods do not define
elements of the annotation type (§9.6.1).

Because these methods do not define elements of the annotation type, it is illegal to use
them in annotations of that type (§9.7). Without this rule, we could not ensure that elements
were of the types representable in annotations, or that accessor methods for them would
be available.

Unless explicitly modified herein, all of the rules that apply to normal interface
declarations apply to annotation type declarations.

For example, annotation types share the same namespace as normal class and interface
types; and annotation type declarations are legal wherever interface declarations are legal,
and have the same scope and accessibility.

9.6.1 Annotation Type Elements

The body of an annotation type may contain method declarations, each of which
defines an element of the annotation type. An annotation type has no elements other
than those defined by the methods it explicitly declares.

AnnotationTypeBody:
{ {AnnotationTypeMemberDeclaration} }
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AnnotationTypeMemberDeclaration:
AnnotationTypeElementDeclaration
ConstantDeclaration
ClassDeclaration
InterfaceDeclaration

.
r

AnnotationTypeElementDeclaration:
{AnnotationTypeElementModifier} UnannType Identifier ( ) [Dims]
[DefaultValue] ;

AnnotationTypeElementModifier:
(one of)

Annotation public
abstract

By virtue of the AnnotationTypeElementDeclaration production, a method declaration in an
annotation type declaration cannot have formal parameters, type parameters, or a throws
clause. The following production from §4.3 is shown here for convenience:

Dims:
{Annotation} [ ] {{Annotation} [ 1}

By virtue of the AnnotationTypeElementModifier production, a method declaration in an
annotation type declaration cannot be default or static. Thus, an annotation type
cannot declare the same variety of methods as a normal interface type. Note that it is still
possible for an annotation type to inherit a default method from its implicit superinterface,

java.lang.annotation.Annotation, though no such default method exists as of Java
SE 8.

By convention, the only AnnotationTypeElementModifiers that should be present on an
annotation type element are annotations.

The return type of a method declared in an annotation type must be one of the
following, or a compile-time error occurs:

* A primitive type

® String

e Class or an invocation of class (§4.5)
* An enum type

* An annotation type

* An array type whose component type is one of the preceding types (§10.1).
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This rule precludes elements with nested array types, such as:

@interface Verboten {
String[][] value();
}

The declaration of a method that returns an array is allowed to place the bracket
pair that denotes the array type after the empty formal parameter list. This syntax is
supported for compatibility with early versions of the Java programming language.
It is very strongly recommended that this syntax is not used in new code.

It is a compile-time error if any method declared in an annotation type has a
signature that is override-equivalent to that of any public or protected method
declared in class object or in the interface java.lang.annotation.Annotation.

It is a compile-time error if an annotation type declaration T contains an element
of type T, either directly or indirectly.

For example, this is illegal:
@interface SelfRef { SelfRef value(); }
and so is this:

@interface Ping { Pong value(); }
@interface Pong { Ping value(); }

An annotation type with no elements is called a marker annotation type.
An annotation type with one element is called a single-element annotation type.

By convention, the name of the sole element in a single-element annotation type
is value. Linguistic support for this convention is provided by single-element
annotations (§9.7.3).

Example 9.6.1-1. Annotation Type Declaration

The following annotation type declaration defines an annotation type with several elements:

[ x*
* Describes the "request-for-enhancement" (RFE)
* that led to the presence of the annotated API element.

*/

@interface RequestForEnhancement {
int id(); // Unique ID number associated with RFE
String synopsis(); // Synopsis of RFE
String engineer(); // Name of engineer who implemented RFE
String date(); // Date RFE was implemented
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Example 9.6.1-2. Marker Annotation Type Declaration

The following annotation type declaration defines a marker annotation type:

[ x*

* An annotation with this type indicates that the
* specification of the annotated API element is

* preliminary and subject to change.

*/

@interface Preliminary {}

Example 9.6.1-3. Single-Element Annotation Type Declarations

The convention that a single-element annotation type defines an element called value is
illustrated in the following annotation type declaration:

/**

* Associates a copyright notice with the annotated API element.
*/
@interface Copyright {
String value();

The following annotation type declaration defines a single-element annotation type whose
sole element has an array type:

[ x*
* Associates a list of endorsers with the annotated class.
*/
@interface Endorsers {
String[] value();

The following annotation type declaration shows a Class-typed element whose value is
constrained by a bounded wildcard:
interface Formatter {}

// Designates a formatter to pretty-print the annotated class
@interface PrettyPrinter {
Class<? extends Formatter> value();

The following annotation type declaration contains an element whose type is also an
annotation type:

/**
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* Indicates the author of the annotated program element.
*/
@interface Author {

Name value();

}
/**
* A person's name. This annotation type is not designed
* to be used directly to annotate program elements, but to
* define elements of other annotation types.
*/
@interface Name {
String first();
String last();

The grammar for annotation type declarations permits other element declarations besides
method declarations. For example, one might choose to declare a nested enum for use in
conjunction with an annotation type:

@interface Quality {
enum Level { BAD, INDIFFERENT, GOOD }
Level value();

9.6.2 Defaults for Annotation Type Elements

An annotation type element may have a default value, specified by following the
element's (empty) parameter list with the keyword default and an ElementValue
(§9.7.1).

DefaultValue:
default ElementValue

It is a compile-time error if the type of the element is not commensurate (§9.7) with
the default value specified.

Default values are not compiled into annotations, but rather applied dynamically
at the time annotations are read. Thus, changing a default value affects annotations
even in classes that were compiled before the change was made (presuming these
annotations lack an explicit value for the defaulted element).

Example 9.6.2-1. Annotation Type Declaration With Default Values

Here is a refinement of the RequestForEnhancement annotation type from §9.6.1:

@interface RequestForEnhancementDefault {
int id(); // No default - must be specified in
// each annotation
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String synopsis(); // No default - must be specified in
// each annotation
String engineer() default "[unassigned]";
String date() default "[unimplemented]";

9.6.3 Repeatable Annotation Types

An annotation type T is repeatable if its declaration is (meta-)annotated with an
@Repeatable annotation (§9.6.4.8) whose value element indicates a containing
annotation type of T.

An annotation type TcC is a containing annotation type of T if all of the following
are true:

1.
2.

Tc declares a value() method whose return type is 7[ ].
Any methods declared by Tc other than value() have a default value.

Tc is retained for at least as long as T, where retention is expressed explicitly
or implicitly with the @Retention annotation (§9.6.4.2). Specifically:

o If the retention of TC is
java.lang.annotation.RetentionPolicy.SOURCE, then the retention of T
iS java.lang.annotation.RetentionPolicy.SOURCE.

e If the retention of TCis java.lang.annotation.RetentionPolicy.CLASS,
then the retention of T is either
java.lang.annotation.RetentionPolicy.CLASS or
java.lang.annotation.RetentionPolicy.SOURCE.

o If the retention of TC is
java.lang.annotation.RetentionPolicy.RUNTIME, then the retention
of T is java.lang.annotation.RetentionPolicy.SOURCE,
java.lang.annotation.RetentionPolicy.CLASS, or
java.lang.annotation.RetentionPolicy.RUNTIME.

T is applicable to at least the same kinds of program element as 7c (§9.6.4.1).
Specifically, if the kinds of program element where T is applicable are denoted
by the set m;, and the kinds of program element where Tc is applicable are
denoted by the set m;, then each kind in m, must occur in m;, except that:

o If the kind in my is
java.lang.annotation.ElementType.ANNOTATION TYPE, then at least
one of Jjava.lang.annotation.ElementType.ANNOTATION TYPE Of
java.lang.annotation.ElementType.TYPE or
java.lang.annotation.ElementType.TYPE USE must occur in m;.
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e If the kind in m, iS Jjava.lang.annotation.ElementType.TYPE,
then at least one of java.lang.annotation.ElementType.TYPE OrI
java.lang.annotation.ElementType.TYPE USE must occur in m;.

o If the kind in my is
java.lang.annotation.ElementType.TYPE PARAMETER, then at least
one of java.lang.annotation.ElementType.TYPE PARAMETER Or
java.lang.annotation.ElementType.TYPE USE must occur in m;.

This clause implements the policy that an annotation type may be repeatable on only
some of the kinds of program element where it is applicable.

5. If the declaration of T has a (meta-)annotation that corresponds to
java.lang.annotation.Documented, then the declaration of Tc must have a
(meta-)annotation that corresponds to java.lang.annotation.Documented.

Note that it is permissible for T to be @Documented while T is not @Documented.

6. If the declaration of T has a (meta-)annotation that corresponds to
java.lang.annotation.Inherited, then the declaration of Tc must have a
(meta)-annotation that corresponds to java.lang.annotation.Inherited.

Note that it is permissible for TC to be @ Inherited while Tis not @Inherited.

It is a compile-time error if an annotation type T is (meta-)annotated with an
@Repeatable annotation whose value element indicates a type which is not a
containing annotation type of .

Example 9.6.3-1. Ill-formed Containing Annotation Type
Consider the following declarations:

@Repeatable(FooContainer.class)
@interface Foo {}

@interface FooContainer { Object[] value(); }

Compiling the Foo declaration produces a compile-time error because Foo uses
@Repeatable to attempt to specify FooContainer as its containing annotation type, but
FooContainer is not in fact a containing annotation type of Foo. (The return type of
FooContainer.value() is not Foo[ ].)

The erepeatable annotation cannot be repeated, so only one containing annotation
type can be specified by a repeatable annotation type.
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Allowing more than one containing annotation type to be specified would cause an
undesirable choice at compile time, when multiple annotations of the repeatable annotation
type are logically replaced with a container annotation (§9.7.5).

An annotation type can be the containing annotation type of at most one annotation
type.

This is implied by the requirement that if the declaration of an annotation type T specifies
a containing annotation type of TC, then the value() method of TC has a return type
involving T, specifically T[ ].

An annotation type cannot specify itself as its containing annotation type.

This is implied by the requirement on the value () method of the containing annotation
type. Specifically, if an annotation type A specified itself (via @Repeatable) as its
containing annotation type, then the return type of A's value () method would have to be
A[ 1; but this would cause a compile-time error since an annotation type cannot refer to itself
in its elements (§9.6.1). More generally, two annotation types cannot specify each other to
be their containing annotation types, because cyclic annotation type declarations are illegal.

An annotation type Tc may be the containing annotation type of some annotation
type T while also having its own containing annotation type rc '. That is, a
containing annotation type may itself be a repeatable annotation type.

Example 9.6.3-2. Restricting Where Annotations May Repeat

An annotation whose type declaration indicates a target of
java.lang.annotation.ElementType.TYPE can appear in at least as many
locations as an annotation whose type declaration indicates a target of
java.lang.annotation.ElementType.ANNOTATION TYPE. For example, given the
following declarations of repeatable and containing annotation types:

@Target (ElementType.TYPE)
@Repeatable(FooContainer.class)
@interface Foo {}

@Target (ElementType.ANNOTATION TYPE)
@Interface FooContainer {
Foo[] value();

}

@Foo can appear on any type declaration while @FooContainer can appear on only
annotation type declarations. Therefore, the following annotation type declaration is legal:

@Foo @Foo
@interface X {}

while the following interface declaration is illegal:

INTERFACES
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@Foo @Foo
interface X {}

More broadly, if Foo is a repeatable annotation type and FooContainer is its containing
annotation type, then:

e If Foo has no @Target meta-annotation and FooContainer has no @Target meta-
annotation, then @Foo may be repeated on any program element which supports
annotations.

e If Foo has no @Target meta-annotation but FooContainer has an @Target
meta-annotation, then @Foo may only be repeated on program elements where
@FooContainer may appear.

* If Foo has an @Target meta-annotation, then in the judgment of the designers of the
Java programming language, FooContainer must be declared with knowledge of the
Foo's applicability. Specifically, the kinds of program element where FooContainer
may appear must logically be the same as, or a subset of, Foo's kinds.

For example, if Foo is applicable to field and method declarations, then
FooContainer may legitimately serve as Foo's containing annotation type if
FooContainer is applicable to just field declarations (preventing @Foo from
being repeated on method declarations). But if FooContainer is applicable only
to formal parameter declarations, then FooContainer was a poor choice of
containing annotation type by Foo because @FooContainer cannot be implicitly
declared on some program elements where @Foo is repeated.

Similarly, if Foo is applicable to field and method declarations, then
FooContainer cannot legitimately serve as Foo's containing annotation type if
FooContainer is applicable to field and parameter declarations. While it would
be possible to take the intersection of the program elements and make Foo
repeatable on field declarations only, the presence of additional program elements
for FooContainer indicates that FooContainer was not designed as a containing
annotation type for Foo. It would therefore be dangerous for Foo to rely on it.

Example 9.6.3-3. A Repeatable Containing Annotation Type

The following declarations are legal:

// Foo: Repeatable annotation type
@Repeatable(FooContainer.class)
@interface Foo { int value(); }

// FooContainer: Containing annotation type of Foo

// Also a repeatable annotation type itself
@Repeatable(FooContainerContainer.class)

@interface FooContainer { Foo[] value(); }

// FooContainerContainer: Containing annotation type of FooContainer
@interface FooContainerContainer { FooContainer[] value(); }

Thus, an annotation whose type is a containing annotation type may itself be repeated:
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@FooContainer({@Foo(1l)}) @FooContainer({@Foo(2)})
class A {}

An annotation type which is both repeatable and containing is subject to the rules on
mixing annotations of repeatable annotation type with annotations of containing annotation
type (§9.7.5). For example, it is not possible to write multiple @ Foo annotations alongside
multiple @FooContainer annotations, nor is it possible to write multiple @FooContainer
annotations alongside multiple @FooContainerContainer annotations. However, if the
FooContainerContainer type was itself repeatable, then it would be possible to write
multiple @Foo annotations alongside multiple @FooContainerContainer annotations.

9.64 Predefined Annotation Types

Several annotation types are predefined in the libraries of the Java SE platform.
Some of these predefined annotation types have special semantics. These semantics
are specified in this section. This section does not provide a complete specification
for the predefined annotations contained here in; that is the role of the appropriate
API specifications. Only those semantics that require special behavior on the part
of a Java compiler or Java Virtual Machine implementation are specified here.

9.64.1 eTarget

An annotation of type java.lang.annotation.Target is used on the
declaration of an annotation type T to specify the contexts in which T is
applicable. java.lang.annotation.Target has a single element, value, of type
java.lang.annotation.ElementType[ ], to specify contexts.

Annotation types may be applicable in declaration contexts, where annotations
apply to declarations, or in type contexts, where annotations apply to types used in
declarations and expressions.

There are eight declaration contexts, each corresponding to an enum constant of
java.lang.annotation.ElementType:

1. Package declarations (§7.4.1)
Corresponds to java.lang.annotation.ElementType.PACKAGE

2. Type declarations: class, interface, enum, and annotation type declarations
(88.1.1,89.1.1, §8.5,89.5, §8.9, §9.6)

Corresponds to java.lang.annotation.ElementType.TYPE

Additionally, annotation type declarations correspond to
java.lang.annotation.ElementType.ANNOTATION TYPE
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3. Method declarations (including elements of annotation types) (§8.4.3, §9.4,
§9.6.1)

Corresponds to java.lang.annotation.ElementType.METHOD
4. Constructor declarations (§8.8.3)
Corresponds to java.lang.annotation.ElementType.CONSTRUCTOR

5. Type parameter declarations of generic classes, interfaces, methods, and
constructors (§8.1.2,89.1.2,8§8.4.4,88.8.4)

Corresponds to java.lang.annotation.ElementType.TYPE PARAMETER
6. Field declarations (including enum constants) (§8.3.1, §9.3, §8.9.1)
Corresponds to java.lang.annotation.ElementType.FIELD
7. Formal and exception parameter declarations (§8.4.1, §9.4, §14.20)
Corresponds to java.lang.annotation.ElementType.PARAMETER

8. Local variable declarations (including loop variables of for statements
and resource variables of try-with-resources statements) (§14.4, §14.14.1,
§14.14.2,§14.20.3)

Corresponds to java.lang.annotation.ElementType.LOCAL VARIABLE

There are 16 type contexts (§4.11), all represented by the enum constant TYPE_USE
of java.lang.annotation.ElementType.

It is a compile-time error if the same enum constant appears more than once in the
value element of an annotation of type java.lang.annotation.Target.

If an annotation of type java.lang.annotation.Target is not present on the
declaration of an annotation type T, then T is applicable in all declaration contexts
except type parameter declarations, and in no type contexts.

These contexts are the syntactic locations where annotations were allowed in Java SE 7.

9.64.2 @Retention

Annotations may be present only in source code, or they may be present in the
binary form of a class or interface. An annotation that is present in the binary form
may or may not be available at run time via the reflection libraries of the Java
SE platform. The annotation type java.lang.annotation.Retention is used to
choose among these possibilities.
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If an annotation a corresponds to a type T, and T has a (meta-)annotation m that
corresponds to java.lang.annotation.Retention, then:

o If m has an element whose value is
java.lang.annotation.RetentionPolicy.SOURCE,then a Java compiler must
ensure that a is not present in the binary representation of the class or interface
in which a appears.

o If m has an element whose value is
java.lang.annotation.RetentionPolicy.CLASS or
java.lang.annotation.RetentionPolicy.RUNTIME, then a Java compiler
must ensure that a is represented in the binary representation of the class or
interface in which a appears, unless m annotates a local variable declaration.

An annotation on a local variable declaration is never retained in the binary
representation.

In addition, if m has an element whose value is
java.lang.annotation.RetentionPolicy.RUNTIME, the reflection libraries of
the Java SE platform must make a available at run time.

If 7 does not have a (meta-)annotation m that corresponds to
java.lang.annotation.Retention, then a Java compiler must treat T as if
it does have such a meta-annotation m with an element whose value is
java.lang.annotation.RetentionPolicy.CLASS.

9643 @Inherited

The annotation type java.lang.annotation.Inherited is used to indicate that
annotations on a class ¢ corresponding to a given annotation type are inherited by
subclasses of c.

9.644 eoverride

Programmers occasionally overload a method declaration when they mean to
override it, leading to subtle problems. The annotation type override supports
early detection of such problems.

The classic example concerns the equals method. Programmers write the following in
class Foo:

public boolean equals(Foo that) { ... }

when they mean to write:
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public boolean equals(Object that) { ... }

This is perfectly legal, but class Foo inherits the equals implementation from Object,
which can cause some very subtle bugs.

If a method declaration is annotated with the annotation éoverride, but the method
does not override or implement a method declared in a supertype, or is not override-
equivalent to a public method of object, a compile-time error occurs.

This behavior differs from Java SE 5.0, where @Override only caused a compile-time
error if applied to a method that implemented a method from a superinterface that was not
also present in a superclass.

The clause about overriding a public method is motivated by use of @Override in an
interface. Consider the following type declarations:

class Foo { @Override public int hashCode() {..} }
interface Bar { @Override int hashCode(); }

The use of @override in the class declaration is legal by the first clause, because
Foo.hashCode overrides Object.hashCode (§8.4.8).

For the interface declaration, consider that while an interface does not have Object as
a supertype, an interface does have public abstract members that correspond to the
public members of Object (§9.2). If an interface chooses to declare them explicitly (i.e.
to declare members that are override-equivalent to public methods of Object), then the
interface is deemed to override them (§8.4.8), and use of @Override is allowed.

However, consider an interface that attempts to use @Override on a clone method:
(finalize could also be used in this example)

interface Quux { @Override Object clone(); }

Because Object.clone is not public, there is no member called clone implicitly
declared in Quux. Therefore, the explicit declaration of clone in Quux is not deemed
to "implement" any other method, and it is erroneous to use @override. (The fact that
Quux.clone is public is not relevant.)

In contrast, a class declaration that declares clone is simply overriding Object.clone,
so is able to use @override:

class Beep { @Override protected Object clone() {..} }

9.64.5 e@suppressWarnings

Java compilers are increasingly capable of issuing helpful "lint-like" warnings.
To encourage the use of such warnings, there should be some way to disable a
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warning in a part of the program when the programmer knows that the warning is
inappropriate.

The annotation type SuppressWarnings supports programmer control over
warnings otherwise issued by a Java compiler. It contains a single element that is
an array of String.

If a program declaration is annotated with the annotation
@SuppressWarnings(value = {S;, ..., Sk}),then a Java compiler must not
report any warning identified by one of s; ... s if that warning would have been
generated as a result of the annotated declaration or any of its parts.

Unchecked warnings are identified by the string "unchecked".

Compiler vendors should document the warning names they support in conjunction with
this annotation type. Vendors are encouraged to cooperate to ensure that the same names
work across multiple compilers.

9.64.6 @Deprecated

A program element annotated @Deprecated is one that programmers are
discouraged from using, typically because it is dangerous, or because a better
alternative exists.

A Java compiler must produce a deprecation warning when a type, method, field, or
constructor whose declaration is annotated with @peprecated is used (overridden,
invoked, or referenced by name) in a construct which is explicitly or implicitly
declared, unless:

e The use is within an entity that is itself annotated with the annotation
@Deprecated; Or

* The use is within an entity that is annotated to suppress the warning with the
annotation @SuppressWarnings( "deprecation"); Or

¢ The use and declaration are both within the same outermost class.

Use of the @peprecated annotation on a local variable declaration or on a parameter
declaration has no effect.

The only implicitly declared construct that can cause a deprecation warning is a container
annotation (§9.7.5). Namely, if T is a repeatable annotation type and TC is its containing
annotation type, and TC is deprecated, then repeating the @T annotation will cause a
deprecation warning. The warning is due to the implicit @TC container annotation. It is
strongly discouraged to deprecate a containing annotation type without deprecating the
corresponding repeatable annotation type.
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9.64.7 esafevarargs

A variable arity parameter with a non-reifiable element type (§4.7) can cause heap
pollution (§4.12.2) and give rise to compile-time unchecked warnings (§5.1.9).
Such warnings are uninformative if the body of the variable arity method is well-
behaved with respect to the variable arity parameter.

The annotation type Safevarargs, when used to annotate a method or constructor
declaration, makes a programmer assertion that prevents a Java compiler from
reporting unchecked warnings for the declaration or invocation of a variable arity
method or constructor where the compiler would otherwise do so due to the variable
arity parameter having a non-reifiable element type.

The annotation @safeVarargs has non-local effects because it suppresses unchecked
warnings at method invocation expressions in addition to an unchecked warning pertaining
to the declaration of the variable arity method itself (§8.4.1). In contrast, the annotation
@SuppressWarnings ("unchecked") has local effects because it only suppresses
unchecked warnings pertaining to the declaration of a method.

The canonical target for @safevarargs is a method like
java.util.Collections.addAll, whose declaration starts with:

public static <T> boolean
addAll(Collection<? super T> c, T... elements)

The variable arity parameter has declared type T[], which is non-reifiable. However,
the method fundamentally just reads from the input array and adds the elements
to a collection, both of which are safe operations with respect to the array.
Therefore, any compile-time unchecked warnings at method invocation expressions for
java.util.Collections.addAll are arguably spurious and uninformative. Applying
@safeVarargs to the method declaration prevents generation of these unchecked warnings
at the method invocation expressions.

It is a compile-time error if a fixed arity method or constructor declaration is
annotated with the annotation @safevarargs.

It is a compile-time error if a variable arity method declaration that is neither
static nor final is annotated with the annotation @safevarargs.

Since @Safevarargs is only applicable to static methods, £inal instance methods,
and constructors, the annotation is not usable where method overriding occurs. Annotation
inheritance only works on classes (not methods, interfaces, or constructors), so an
@safeVarargs-style annotation cannot be passed through instance methods in classes or
through interfaces.
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9.64.8 @Repeatable

The annotation type java.lang.annotation.Repeatable is used on the
declaration of a repeatable annotation type to indicate its containing annotation
type (§9.6.3).

Note that an @Repeatable meta-annotation on the declaration of T, indicating Tc, is
not sufficient to make TC the containing annotation type of T. There are numerous well-
formedness rules for TC to be considered the containing annotation type of T.

9649 @FunctionalInterface

The annotation type FunctionalInterface is used to indicate that an interface
is meant to be a functional interface (§9.8). It facilitates early detection of
inappropriate method declarations appearing in or inherited by an interface that is
meant to be functional.

It is a compile-time error if an interface declaration is annotated with
@FunctionalInterface but is not, in fact, a functional interface.

Because some interfaces are functional incidentally, it is not necessary or
desirable that all declarations of functional interfaces be annotated with
@FunctionalInterface.

9.7 Annotations

An annotation is a marker which associates information with a program construct,
but has no effect at run time. An annotation denotes a specific invocation of an
annotation type (§9.6) and usually provides values for the elements of that type.

There are three kinds of annotations. The first kind is the most general, while the
other kinds are merely shorthands for the first kind.

Annotation:
NormalAnnotation
MarkerAnnotation
SingleElementAnnotation

Normal annotations are described in §9.7.1, marker annotations in §9.7.2, and
single element annotations in §9.7.3. Annotations may appear at various syntactic
locations in a program, as described in §9.7.4. The number of annotations of the
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same type that may appear at a location is determined by their type, as described
in §9.7.5.

9.7.1 Normal Annotations

A normal annotation specifies the name of an annotation type and optionally a list
of comma-separated element-value pairs. Each pair contains an element value that
is associated with an element of the annotation type (§9.6.1).

NormalAnnotation:
@ TypeName ( [ElementValuePairList] )

ElementValuePairList:
ElementValuePair {, ElementValuePair}

ElementValuePair:
Identifier = ElementValue

ElementValue:
Conditional Expression
ElementValueArraylnitializer
Annotation

ElementValueArraylnitializer:
{ [ElementValueList] [,] }

ElementValueList:
ElementValue {, ElementValue}

Note that the at-sign (@) is a token unto itself (§3.11). It is possible to put whitespace
between it and the TypeName, but this is discouraged as a matter of style.

The TypeName specifies the annotation type corresponding to the annotation. The
annotation is said to be "of" that type.

It is a compile-time error if TypeName does not specify an annotation type that is
accessible (§6.6) at the point where the annotation appears.

The Identifier in an element-value pair must be the simple name of one of the
elements (i.e. methods) of the annotation type, or a compile-time error occurs.

The return type of this method defines the element type of the element-value pair.

9.7

311



9.7

312

Annotations INTERFACES

If the element type is an array type, then it is not required to use curly
braces to specify the element value of the element-value pair. If the element
value is not an ElementValueArraylnitializer, then an array value whose sole
element is the element value is associated with the element. If the element
value is an ElementValueArraylnitializer, then the array value represented by the
ElementValueArraylnitializer is associated with the element.

It is a compile-time error if the element type is not commensurate with the element
value. An element type T is commensurate with an element value v if and only if
one of the following is true:

* Tis an array type E[ ], and either:

— If vis a Conditional Expression or an Annotation, then vis commensurate with
E; Or

— If v is an ElementValueArraylnitializer, then each element value that v
contains is commensurate with E.

An ElementValueArraylnitializer is similar to a normal array initializer (§10.6),
except that an ElementValueArraylnitializer may syntactically contain annotations
as well as expressions and nested initializers. However, nested initializers are
not semantically legal in an ElementValueArraylnitializer because they are never
commensurate with array-typed elements in annotation type declarations (nested array
types not permitted).

* Tis not an array type, and the type of v is assignment compatible (§5.2) with
T, and:

— If 7is a primitive type or string, then vis a constant expression (§15.28).
— If T7is class or an invocation of class (§4.5), then vis a class literal (§15.8.2).
— If ris an enum type (§8.9), then vis an enum constant (§8.9.1).

— vis not null.

Note that if T is not an array type or an annotation type, the element value must be a
ConditionalExpression (§15.25). The use of ConditionalExpression rather than a more
general production like Expression is a syntactic trick to prevent assignment expressions
as element values. Since an assignment expression is not a constant expression, it cannot
be a commensurate element value for a primitive or String-typed element.

Formally, it is invalid to speak of an ElementValue as FP-strict (§15.4) because it might be
an annotation or a class literal. Still, we can speak informally of ElementValue as FP-strict
when it is either a constant expression or an array of constant expressions or an annotation
whose element values are (recursively) found to be constant expressions; after all, every
constant expression is FP-strict.
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A normal annotation must contain an element-value pair for every element of the
corresponding annotation type, except for those elements with default values, or a
compile-time error occurs.

A normal annotation may, but is not required to, contain element-value pairs for
elements with default values.

It is customary, though not required, that element-value pairs in an annotation are presented
in the same order as the corresponding elements in the annotation type declaration.

An annotation on an annotation type declaration is known as a meta-annotation.

An annotation of type T may appear as a meta-annotation on the declaration of type
T itself. More generally, circularities in the transitive closure of the "annotates"
relation are permitted.

For example, it is legal to annotate the declaration of an annotation type S with a meta-
annotation of type T, and to annotate T's own declaration with a meta-annotation of type S.
The pre-defined annotation types contain several such circularities.

Example 9.7.1-1. Normal Annotations

Here is an example of a normal annotation using the annotation type from §9.6.1:

@RequestForEnhancement (

id = 2868724,
synopsis = "Provide time-travel functionality",
engineer = "Mr. Peabody",
date = "4/1/2004"
)
public static void travelThroughTime(Date destination) { ... }

Here is an example of a normal annotation that takes advantage of default values, using the
annotation type from §9.6.2:

@RequestForEnhancement (
id = 4561414,
synopsis = "Balance the federal budget"”
)
public static void balanceFederalBudget() {
throw new UnsupportedOperationException("Not implemented");

}

9.7.2 Marker Annotations

A marker annotation is a shorthand designed for use with marker annotation types
(§9.6.1).
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MarkerAnnotation.:
@ TypeName

It is shorthand for the normal annotation:
@TypeName ()

It is legal to use marker annotations for annotation types with elements, so long as
all the elements have default values (§9.6.2).

Example 9.7.2-1. Marker Annotations

Here is an example using the Preliminary marker annotation type from §9.6.1:

@Preliminary public class TimeTravel { ... }

9.7.3 Single-Element Annotations

A single-element annotation, is a shorthand designed for use with single-element
annotation types (§9.6.1).

SingleElementAnnotation:
@ TypeName ( ElementValue )

It is shorthand for the normal annotation:
@TypeName(value = ElementValue)

It is legal to use single-element annotations for annotation types with multiple
elements, so long as one element is named value and all other elements have
default values (§9.6.2).

Example 9.7.3-1. Single-Element Annotations
The following annotations all use the single-element annotation types from §9.6.1.
Here is an example of a single-element annotation:

@Copyright("2002 Yoyodyne Propulsion Systems, Inc.")
public class OscillationOverthruster { ... }

Here is an example of an array-valued single-element annotation:

@Endorsers({"Children", "Unscrupulous dentists"})
public class Lollipop { ... }
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Here is an example of a single-element array-valued single-element annotation: (note that
the curly braces are omitted)

@Endorsers("Epicurus")
public class Pleasure { ... }

Here is an example of a single-element annotation with a Class-typed element whose value
is constrained by a bounded wildcard.

class GorgeousFormatter implements Formatter { ... }

@PrettyPrinter (GorgeousFormatter.class)
public class Petunia { ... }

// Illegal; String is not a subtype of Formatter

@PrettyPrinter(String.class)
public class Begonia { ... }

Here is an example with of a single-element annotation that contains a normal annotation:

@Author (@Name(first = "Joe", last = "Hacker"))
public class BitTwiddle { ... }

Here is an example of a single-element annotation that uses an enum type defined inside
the annotation type:

@Quality(Quality.Level.GOOD)
public class Karma { ... }

9.7.4 Where Annotations May Appear

A declaration annotation is an annotation that applies to a declaration, and whose
own type is applicable in the declaration context (§9.6.4.1) represented by that
declaration.

A type annotation is an annotation that applies to a type (or any part of a type), and
whose own type is applicable in type contexts (§4.11).

For example, given the field declaration:
@Foo int £;

@Foo is a declaration annotation on £ if Foo is meta-annotated by
@Target (ElementType.FIELD), and a type annotation on int if Foo is meta-annotated
by @Target (ElementType.TYPE USE). It is possible for @Foo to be both a declaration
annotation and a type annotation simultaneously.
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Type annotations can apply to an array type or any component type thereof (§10.1).
For example, assuming that A, B, and C are annotation types meta-annotated with
@Target (ElementType.TYPE_USE), then given the field declaration:

@c int @A [] @B [] £f;

@A applies to the array type int[ ][], @B applies to its component type int[ ], and €C
applies to the element type int. For more examples, see §10.2.

An important property of this syntax is that, in two declarations that differ only in the
number of array levels, the annotations to the left of the type refer to the same type. For
example, @c applies to the type int in all of the following declarations:

@c int £;
@c intg[] £;
@c int[][] £;

It is customary, though not required, to write declaration annotations before all other
modifiers, and type annotations immediately before the type to which they apply.

It is possible for an annotation to appear at a syntactic location in a program where
it could plausibly apply to a declaration, or a type, or both. This can happen in any
of the five declaration contexts where modifiers immediately precede the type of
the declared entity:

* Method declarations (including elements of annotation types)
* Constructor declarations

* Field declarations (including enum constants)

* Formal and exception parameter declarations

* Local variable declarations (including loop variables of for statements and
resource variables of try-with-resources statements)

The grammar of the Java programming language unambiguously treats annotations
at these locations as modifiers for a declaration (§8.3), but that is purely a syntactic
matter. Whether an annotation applies to a declaration or to the type of the declared
entity - and thus, whether the annotation is a declaration annotation or a type
annotation - depends on the applicability of the annotation's type:

* If the annotation's type is applicable in the declaration context corresponding to
the declaration, and not in type contexts, then the annotation is deemed to apply
only to the declaration.

* If the annotation's type is applicable in type contexts, and not in the declaration
context corresponding to the declaration, then the annotation is deemed to apply
only to the type which is closest to the annotation.
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* If the annotation's type is applicable in the declaration context corresponding to
the declaration and in type contexts, then the annotation is deemed to apply to
both the declaration and the type which is closest to the annotation.

In the second and third cases above, the type which is closest to the annotation is
the type written in source code for the declared entity; if that type is an array type,
then the element type is deemed to be closest to the annotation.

For example, in the field declaration @Foo public static String £;,the type which
is closest to @Foo is String. (If the type of the field declaration had been written as
java.lang.String, then java.lang.String would be the type closest to @Foo, and
later rules would prohibit a type annotation from applying to the package name java.) In
the generic method declaration @Foo <T> int[] m() {...},the type written for the
declared entity is int[ ], so @Foo applies to the element type int.

Local variable declarations are similar to formal parameter declarations of lambda
expressions, in that both allow declaration annotations and type annotations in source code,
but only the type annotations can be stored in the class file.

There are two special cases involving method/constructor declarations:

* If an annotation appears before a constructor declaration and is deemed to apply
to the type which is closest to the annotation, that type is the type of the newly
constructed object. The type of the newly constructed object is the fully qualified
name of the type immediately enclosing the constructor declaration. Within that
fully qualified name, the annotation applies to the simple type name indicated
by the constructor declaration.

e If an annotation appears before a void method declaration and is deemed to apply
only to the type which is closest to the annotation, a compile-time error occurs.

It is a compile-time error if an annotation of type T is syntactically a modifier for:
» apackage declaration, but T is not applicable to package declarations.

* aclass, interface, or enum declaration, but T is not applicable to type declarations
or type contexts; or an annotation type declaration, but T is not applicable to
annotation type declarations or type declarations or type contexts.

* a method declaration (including an element of an annotation type), but T is not
applicable to method declarations or type contexts.

* a constructor declaration, but T is not applicable to constructor declarations or
type contexts.

* atype parameter declaration of a generic class, interface, method, or constructor,
but T is not applicable to type parameter declarations or type contexts.
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a field declaration (including an enum constant), but T is not applicable to field
declarations or type contexts.

* a formal or exception parameter declaration, but T is not applicable to either
formal and exception parameter declarations or type contexts.

* areceiver parameter, but T is not applicable to type contexts.

a local variable declaration (including a loop variable of a for statement or a
resource variable of a try-with-resources statement), but T is not applicable to
local variable declarations or type contexts.

Note that most of the clauses above mention "... or type contexts", because even if an
annotation does not apply to the declaration, it may still apply to the type of the declared
entity.

A type annotation is admissible if both of the following are true:

* The simple name to which the annotation is closest is classified as a TypeName,
not a PackageName.

* If the simple name to which the annotation is closest is followed by "." and
another TypeName - that is, the annotation appears as @Foo T.U - then u denotes
an inner class of T.

The intuition behind the second clause is that if Outer.this is legal in a nested class
enclosed by outer, then Outer may be annotated because it represents the type of some
object at run time. On the other hand, if Outer. this is not legal - because the class where it
appears has no enclosing instance of Outer at run time - then Outer may not be annotated
because it is logically just a name, akin to components of a package name in a fully qualified
type name.

For example, in the following program, it is not possible to write A. this in the body of B,
as B has no lexically enclosing instances (8.5.1). Therefore, it is not possible to apply @Foo
to A in the type A.B, because A is logically just a name, not a type.

@Target (ElementType.TYPE_USE)
@interface Foo {}

class Test {
class A {
static class B {}
}

@Foo A.B x; // Illegal
}

On the other hand, in the following program, it is possible to write C.this in the body of
D. Therefore, it is possible to apply @Foo to C in the type C.D, because C represents the
type of some object at run time.
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@Target (ElementType.TYPE USE)
@interface Foo {}

class Test {
static class C {
class D {}
}

@Foo C.D x; // Legal
}

Finally, note that the second clause looks only one level deeper in a qualified type. This is
because a static class may only be nested in a top level class or another static nested
class. It is not possible to write a nest like:

@Target (ElementType.TYPE USE)
@interface Foo {}

class Test {
class E {
class F {
static class G {}

}
}

@Foo E.F.G x;
}

Assume for a moment that the nest was legal. In the type of field x, E and F would logically
be names qualifying G, as E.F.this would be illegal in the body of G. Then, @Foo should
not be legal next to E. Technically, however, @Foo would be admissible next to E because
the next deepest term F denotes an inner class; but this is moot as the class nest is illegal
in the first place.

It is a compile-time error if an annotation of type T applies to the outermost level of
a type in a type context, and T is not applicable in type contexts or the declaration
context (if any) which occupies the same syntactic location.

Itis a compile-time error if an annotation of type T applies to a part of a type (that is,
not the outermost level) in a type context, and T is not applicable in type contexts.

It is a compile-time error if an annotation of type T applies to a type (or any part of
a type) in a type context, and T is applicable in type contexts, and the annotation
is not admissible.

For example, assume an annotation type TA which is meta-annotated with just
@Target (ElementType.TYPE USE). The terms @TA java.lang.Object and
java.@TA lang.Object are illegal because the simple name to which @TA is closest is
classified as a package name. On the other hand, java.lang.@TA Object is legal.
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Note that the illegal terms are illegal "everywhere". The ban on annotating package names
applies broadly: to locations which are solely type contexts, such as class ... extends
@TA java.lang.Object {...},and to locations which are both declaration and type
contexts, such as @TA java.lang.Object f£;.(There are no locations which are solely
declaration contexts where a package name could be annotated, as class, package, and type
parameter declarations use only simple names.)

If Ta is additionally meta-annotated with @Target (ElementType.FIELD), then the term
@TA java.lang.Object islegal in locations which are both declaration and type contexts,
such as a field declaration @TA java.lang.Object f;. Here, @TA is deemed to apply
to the declaration of £ (and not to the type java.lang.0Object) because TA is applicable
in the field declaration context.

9.7.5 Multiple Annotations of the Same Type

It is a compile-time error if multiple annotations of the same type T appear in a
declaration context or type context, unless T is repeatable (§9.6.3) and both T and
the containing annotation type of T are applicable in the declaration context or type
context (§9.6.4.1).

It is customary, though not required, for multiple annotations of the same type to appear
contiguously.

If a declaration context or type context has multiple annotations of a repeatable
annotation type T, then it is as if the context has no explicitly declared annotations
of type T and one implicitly declared annotation of the containing annotation type
of T.

The implicitly declared annotation is called the container annotation, and the
multiple annotations of type T which appeared in the context are called the base
annotations. The elements of the (array-typed) value element of the container
annotation are all the base annotations in the left-to-right order in which they
appeared in the context.

It is a compile-time error if, in a declaration context or type context, there are
multiple annotations of a repeatable annotation type T and any annotations of the
containing annotation type of 7.

In other words, it is not possible to repeat annotations where an annotation of the same type
as their container also appears. This prohibits obtuse code like:

@Foo(0) @QFoo(l) @FooContainer({@Foo(2)})
class A {}

If this code was legal, then multiple levels of containment would be needed: first the
annotations of type Foo would be contained by an implicitly declared container annotation
of type FooContainer, then that annotation and the explicitly declared annotation of
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type FooContainer would be contained in yet another implicitly declared annotation.
This complexity is undesirable in the judgment of the designers of the Java programming
language. Another approach, treating the annotations of type Foo as if they had occurred
alongside @Foo(2) in the explicit @FooContainer annotation, is undesirable because it
could change how reflective programs interpret the @ FooContainer annotation.

It is a compile-time error if, in a declaration context or type context, there is
one annotation of a repeatable annotation type T and multiple annotations of the
containing annotation type of T.

This rule is designed to allow the following code:

@Foo(1l) @FooContainer({@Foo(2)})
class A {}

With only one annotation of the repeatable annotation type Foo, no container annotation
is implicitly declared, even if FooContainer is the containing annotation type of Foo.
However, repeating the annotation of type FooContainer, as in:

@Foo(1l) @FooContainer({@Foo(2)}) @FooContainer({@Foo(3)})
class A {}

is prohibited, even if FooContainer is repeatable with a containing annotation type of its
own. It is obtuse to repeat annotations which are themselves containers when an annotation
of the underlying repeatable type is present.

9.8 Functional Interfaces

A functional interface is an interface that has just one abstract method (aside
from the methods of object), and thus represents a single function contract. This
"single" method may take the form of multiple abstract methods with override-
equivalent signatures inherited from superinterfaces; in this case, the inherited
methods logically represent a single method.

For an interface 1, let m be the set of abstract methods that are members of 1 that
do not have the same signature as any public instance method of the class object.
Then, 1 is a functional interface if there exists a method m in ¥ for which both of
the following are true:

* The signature of mis a subsignature (§8.4.2) of every method's signature in m.

* mis return-type-substitutable (§8.4.5) for every method in m.

9.8
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In addition to the usual process of creating an interface instance by declaring and
instantiating a class (§15.9), instances of functional interfaces can be created with
method reference expressions and lambda expressions (§15.13, §15.27).

The definition of functional interface excludes methods in an interface that are also
public methods in Object. This is to allow functional treatment of an interface like
java.util.Comparator<T> that declares multiple abstract methods of which only
oneisreally "new" - int compare (T, T).The other method - boolean equals(Object)
- is an explicit declaration of an abstract method that would otherwise be implicitly
declared, and will be automatically implemented by every class that implements the
interface.

Note that if non-public methods of Object,such as clone(),are declared in an interface,
they are not automatically implemented by every class that implements the interface.
The implementation inherited from Object is protected while the interface method is
necessarily public. The only way to implement such an interface would be for a class to
override the non-public Object method with a public method.

Example 9.8-1. Functional Interfaces

A simple example of a functional interface is:

interface Runnable {
void run();

}

The following interface is not functional because it declares nothing which is not already
a member of Object:

interface NonFunc {
boolean equals(Object obj);
}

However, its subinterface can be functional by declaring an abstract method which is
not a member of Object:

interface Func extends NonFunc {
int compare(String ol, String o2);

Similarly, the well known interface java.util.Comparator<T> is functional because it
has one abstract non-Object method:

interface Comparator<T> {
boolean equals(Object obj);
int compare(T ol, T 02);
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The following interface is not functional because while it only declares one abstract
method which is not a member of Object, it declares two abstract methods which are
not public members of Object:

interface Foo {
int m();
Object clone();

Example 9.8-2. Functional Interfaces and Erasure

In the following interface hierarchy, z is a functional interface because while it inherits two
abstract methods which are not members of Object, they have the same signature, so
the inherited methods logically represent a single method:

interface X { int m(Iterable<String> arg); }
interface Y { int m(Iterable<String> arg); }
interface Z extends X, Y {}

Similarly, z is a functional interface in the following interface hierarchy because Y.mis a
subsignature of X.m and is return-type-substitutable for X .m:

interface X { Iterable m(Iterable<String> arg); }
interface Y { Iterable<String> m(Iterable arg); }
interface Z extends X, Y {}

The definition of functional interface respects the fact that an interface cannot have two
members which are not subsignatures of each other, yet have the same erasure (§9.4.1.2).
Thus, in the following three interface hierarchies where z causes a compile-time error, 2
is not a functional interface: (because none of its abstract members are subsignatures of
all other abstract members)

interface X { int m(Iterable<String> arg); }
interface Y { int m(Iterable<Integer> arg); }
interface Z extends X, Y {}

interface X { int m(Iterable<String> arg, Class c); }
interface Y { int m(Iterable arg, Class<?> c); }
interface Z extends X, Y {}

interface X<T> { void m(T arg); }
interface Y<T> { void m(T arg); }
interface Z<A, B> extends X<A>, Y<B> {}

Similarly, the definition of "functional interface" respects the fact that an interface may
only have methods with override-equivalent signatures if one is return-type-substitutable
for all the others. Thus, in the following interface hierarchy where z causes a compile-time
error, % is not a functional interface: (because none of its abstract members are return-
type-substitutable for all other abstract members)
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interface X { long m(); }
interface Y { int m(); }
interface Z extends X, Y {}

In the following example, the declarations of Foo<T,N> and Bar are legal: in each, the
methods called m are not subsignatures of each other, but do have different erasures. Still,
the fact that the methods in each are not subsignatures means Foo<T, N> and Bar are not
functional interfaces. However, Baz is a functional interface because the methods it inherits
from Foo<Integer, Integer> have the same signature and so logically represent a single
method.

interface Foo<T, N extends Number> {
void m(T arg);
void m(N arg);
}
interface Bar extends Foo<String, Integer> {}
interface Baz extends Foo<Integer, Integer> {}

Finally, the following examples demonstrate the same rules as above, but with generic
methods:

interface Exec { <T> T execute(Action<T> a); }
// Functional

interface X { <T> T execute(Action<T> a); }
interface Y { <S> S execute(Action<S> a); }
interface Exec extends X, Y {}

// Functional: signatures are logically "the same"

interface X { <T> T execute(Action<T> a); }
interface Y { <S,T> S execute(Action<S> a); }
interface Exec extends X, Y {}

// Error: different signatures, same erasure

Example 9.8-3. Generic Functional Interfaces

Functional interfaces can be generic, such as java.util.function.Predicate<T>.
Such a functional interface may be parameterized in a way that produces distinct abstract
methods - that is, multiple methods that cannot be legally overridden with a single
declaration. For example:

interface I { Object m(Class c); }

interface J<S> { S m(Class<?> c); }

interface K<T> { T m(Class<?> c); }

interface Functional<S,T> extends I, J<S>, K<T> {}

Functional<S,T> is a functional interface - I.m is return-type-substitutable for J.m
and K.m - but the functional interface type Functional<String, Integer> clearly
cannot be implemented with a single method. However, other parameterizations of
Functional<s,T> which are functional interface types are possible.
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The declaration of a functional interface allows a functional interface type to be
used in a program. There are four kinds of functional interface type:

* The type of a non-generic (§6.1) functional interface

* A parameterized type that is a parameterization (§4.5) of a generic functional
interface

* The raw type (§4.8) of a generic functional interface

* An intersection type (§4.9) that induces a notional functional interface

In special circumstances, it is useful to treat an intersection type as a functional interface
type. Typically, this will look like an intersection of a functional interface type with one
or more marker interface types, such as Runnable & java.io.Serializable.Suchan
intersection can be used in casts (§15.16) that force a lambda expression to conform to a
certain type. If one of the interface types in the intersection is java.io.Serializable,
special run-time support for serialization is triggered (§15.27.4).

9.9 Function Types

The function type of a functional interface 1 is a method type (§8.2) that can be
used to override (§8.4.8) the abstract method(s) of 1.

Let m be the set of abstract methods defined for 1. The function type of I consists
of the following:

* Type parameters, formal parameters, and return type:
Let m be a method in M with:
1. asignature that is a subsignature of every method's signature in »; and

2. a return type that is a subtype of every method's return type in m (after
adapting for any type parameters (§8.4.4)).

If no such method exists, then let m be a method in » that:
1. has a signature that is a subsignature of every method's signature in »; and
2. is return-type-substitutable (§8.4.5) for every method in m.

The function type's type parameters, formal parameter types, and return type are
as given by m.

* throws clause:

The function type's throws clause is derived from the throws clauses of the
methods in m. If the function type is generic, these clauses are first adapted to

9.9
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the type parameters of the function type (§8.4.4). If the function type is not
generic but at least one method in m is generic, these clauses are first erased.
Then, the function type's throws clause includes every type, E, which satisfies
the following constraints:

— Eis mentioned in one of the throws clauses.

— For each throws clause, E is a subtype of some type named in that clause.

When some return types in M are raw and others are not, the definition of a function type
tries to choose the most specific type, if possible. For example, if the return types are
LinkedList and LinkedList<String>, then the latter is immediately chosen as the
function type's return type. When there is no most specific type, the definition compensates
by finding the most substitutable return type. For example, if there is a third return type,
List<?>, then it is not the case that one of the return types is a subtype of every other
(as raw LinkedList is not a subtype of List<?>); instead, LinkedList<String> is
chosen as the function type's return type because it is return-type-substitutable for both
LinkedList and List<?>.

The goal driving the definition of a function type's thrown exception types is to support
the invariant that a method with the resulting throws clause could override each abstract
method of the functional interface. Per §8.4.6, this means the function type cannot throw
"more" exceptions than any single method in the set M, so we look for as many exception
types as possible that are "covered" by every method's throws clause.

The function type of a functional interface type is specified as follows:

* The function type of the type of a non-generic functional interface 1 is simply

the function type of the functional interface 1, as defined above.

The function type of a parameterized functional interface type 1<a;...a,>, where
Aj...Anare types and the corresponding type parameters of 1 are P;...P,, is derived
by applying the substitution [P;:=4;, ..., P,;>=4,] to the function type of the
generic functional interface 1<P;...p,>.

The function type of a parameterized functional interface type 1<a;...Ap>,
where one or more of a;...a, is a wildcard, is the function type of the non-
wildcard parameterization of 1, 1<T;...T,>. The non-wildcard parameterization
is determined as follows.

Let p;...P, be the type parameters of 1 with corresponding bounds B;...B,,. For all
i (1 =i=n),;is derived according to the form of a;:

— If a; is a type, then T; = a;.

— If a; is a wildcard, and the corresponding type parameter's bound, B;, mentions
one of P;...p,, then T; is undefined and there is no function type.

— Otherwise:
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> If a; is an unbound wildcard 2, then T; = B;.

> If a; is a upper-bounded wildcard ? extends U;, then T; = glb(u;, B;)
(§5.1.10).

> If a; is a lower-bounded wildcard ? super ;, then T; = ;.

* The function type of the raw type of a generic functional interface 1<..> is the
erasure of the function type of the generic functional interface 1<..>.

* The function type of an intersection type that induces a notional functional
interface is the function type of the notional functional interface.

Example 9.9-1. Function Types

Given the following interfaces:

interface X { void m() throws IOException; }
interface Y { void m() throws EOFException; }
interface Z { void m() throws ClassNotFoundException; }

the function type of:

interface XY extends X, Y {}
is:

()->void throws EOFException
while the function type of:

interface XYZ extends X, Y, Z {}
is:

()->void (throws nothing)

Given the following interfaces:
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interface A {
List<String> foo(List<String> arg)
throws IOException, SQLTransientException;
}
interface B {
List foo(List<String> arg)
throws EOFException, SQLException, TimeoutException;
}
interface C {
List foo(List arg) throws Exception;

the function type of:
interface D extends A, B {}
is:

(List<String>)->List<String>
throws EOFException, SQLTransientException

while the function type of:
interface E extends A, B, C {}
is:
(List)->List throws EOFException, SQLTransientException

The function type of a functional interface is defined nondeterministically: while the
signatures in M are "the same", they may be syntactically different (HashMap.Entry and
Map.Entry, for example); the return type may be a subtype of every other return type, but
there may be other return types that are also subtypes (List<?> and List<? extends
Object>, for example); and the order of thrown types is unspecified. These distinctions
are subtle, but they can sometimes be important. However, function types are not used
in the Java programming language in such a way that the nondeterminism matters. Note
that the return type and throws clause of a "most specific method" are also defined
nondeterministically when there are multiple abstract methods (§15.12.2.5).

When a generic functional interface is parameterized by wildcards, there are many
different instantiations that could satisfy the wildcard and produce different function types.
For example, each of Predicate<Integer> (function type Integer -> boolean),
Predicate<Number> (function type Number -> boolean), and Predicate<Object>
(function type Object -> boolean)isaPredicate<? super Integer>.Sometimes, it
is possible to known from the context, such as the parameter types of a lambda expression,
which function type is intended (§15.27.3). Other times, it is necessary to pick one; in
these circumstances, the bounds are used. (This simple strategy cannot guarantee that the
resulting type will satisfy certain complex bounds, so not all complex cases are supported.)
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Example 9.9-2. Generic Function Types

A function type may be generic, as a functional interface's abstract method may be generic.
For example, in the following interface hierarchy:

interface Gl {
<E extends Exception> Object m() throws E;

}
interface G2 {
<F extends Exception> String m() throws Exception;

}
interface G extends Gl, G2 {}

the function type of G is:
<F extends Exception> ()->String throws F

A generic function type for a functional interface may be implemented by a method
reference expression (§15.13), but not by a lambda expression (§15.27) as there is no syntax
for generic lambda expressions.
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Arrays

IN the Java programming language, arrays are objects (§4.3.1), are dynamically
created, and may be assigned to variables of type object (§4.3.2). All methods of
class object may be invoked on an array.

An array object contains a number of variables. The number of variables may be
zero, in which case the array is said to be empty. The variables contained in an
array have no names; instead they are referenced by array access expressions that
use non-negative integer index values. These variables are called the components
of the array. If an array has n components, we say n is the length of the array;
the components of the array are referenced using integer indices from O to n - 1,
inclusive.

All the components of an array have the same type, called the component type of
the array. If the component type of an array is T, then the type of the array itself
is written T[ ].

The value of an array component of type f£loat is always an element of the float
value set (§4.2.3); similarly, the value of an array component of type double is
always an element of the double value set. It is not permitted for the value of an
array component of type float to be an element of the float-extended-exponent
value set that is not also an element of the float value set, nor for the value of an
array component of type double to be an element of the double-extended-exponent
value set that is not also an element of the double value set.

The component type of an array may itself be an array type. The components
of such an array may contain references to subarrays. If, starting from any array
type, one considers its component type, and then (if that is also an array type) the
component type of that type, and so on, eventually one must reach a component
type that is not an array type; this is called the element type of the original array,
and the components at this level of the data structure are called the elements of the
original array.
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There are some situations in which an element of an array can be an array: if the
element type is Object or Cloneable Or java.io.Serializable, then some or all
of the elements may be arrays, because any array object can be assigned to any
variable of these types.

10.1 Array Types

Array types are used in declarations and in cast expressions (§15.16).

An array type is written as the name of an element type followed by some number
of empty pairs of square brackets [ ]. The number of bracket pairs indicates the
depth of array nesting.

Each bracket pair in an array type may be annotated by type annotations (§9.7.4).
An annotation applies to the bracket pair (or ellipsis, in a variable arity parameter
declaration) that follows it.

The element type of an array may be any type, whether primitive or reference. In
particular:

* Arrays with an interface type as the element type are allowed.

An element of such an array may have as its value a null reference or an instance
of any type that implements the interface.

* Arrays with an abstract class type as the element type are allowed.

An element of such an array may have as its value a null reference or an instance
of any subclass of the abstract class that is not itself abstract.

An array's length is not part of its type.
The supertypes of an array type are specified in §4.10.3.

The supertype relation for array types is not the same as the superclass relation. The direct
supertype of Integer[ ] is Number[ ] according to §4.10.3, but the direct superclass of
Integer[ ] is Object according to the Class object for Integer[] (§10.8). This does
not matter in practice, because Object is also a supertype of all array types.

10.2 Array Variables

A variable of array type holds a reference to an object. Declaring a variable of array
type does not create an array object or allocate any space for array components. It
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creates only the variable itself, which can contain a reference to an array. However,
the initializer part of a declarator (§8.3, §9.3, §14.4.1) may create an array, a
reference to which then becomes the initial value of the variable.

Example 10.2-1. Declarations of Array Variables

int[] ai; // array of int
short[][] as; // array of array of short
short s, // scalar short
aas[][1; // array of array of short
Object[] ao, // array of Object
otherAo; // array of Object

Collection<?>[] ca; // array of Collection of unknown type

The declarations above do not create array objects. The following are examples of
declarations of array variables that do create array objects:

Exception ae[] = new Exception[3];

Object aao[ ][] new Exception[2][3];

int[] factorial = { 1, 1, 2, 6, 24, 120, 720, 5040 };

char ac]] { 'n', 'o', 't', " ", ta', "',
'S'I 'tll 'rll 'ill 'n" 'g' };

{ "array", "of", "String", };

String[] aas

The array type of a variable depends on the bracket pairs that may appear as part of
the type at the beginning of a variable declaration, or as part of the declarator for
the variable, or both. Specifically, in the declaration of a field, formal parameter,
or local variable (§8.3, §8.4.1, §9.3,894, §14.4.1, §14.14.2, §15.27.1), the array
type of the variable is denoted by:

* the element type that appears at the beginning of the declaration; then,

e any bracket pairs that follow the variable's Identifier in the declarator (not
applicable for a variable arity parameter); then,

* any bracket pairs that appear in the type at the beginning of the declaration (where
the ellipsis of a variable arity parameter is treated as a bracket pair).

The return type of a method (§8.4.5) may be an array type. The precise array type
depends on the bracket pairs that may appear as part of the type at the beginning
of the method declaration, or after the method's formal parameter list, or both. The
array type is denoted by:

* the element type that appears in the Result; then,
* any bracket pairs that follow the formal parameter list; then,

* any bracket pairs that appear in the Result.

10.2
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We do not recommend "mixed notation" in array variable declarations, where
bracket pairs appear on both the type and in declarators; nor in method declarations,
where bracket pairs appear both before and after the formal parameter list.

Example 10.2-2. Array Variables and Array Types

The local variable declaration statement:
byte[] rowvector, colvector, matrix[];
is equivalent to:
byte rowvector[], colvector[], matrix[][];

because the array type of each local variable is unchanged. Similarly, the local variable
declaration statement:

int a, b[], c[][];

is equivalent to the series of declaration statements:
int aj;
int[] b;

int[1[] c;

Brackets are allowed in declarators as a nod to the tradition of C and C++. The general
rules for variable declaration, however, permit brackets to appear on both the type and in
declarators, so that the local variable declaration statement:

float[][] £[1[1, g[1[1[]1, h[]; // Yechh!
is equivalent to the series of declarations:

float[1[1[1[] £;

float[J[I[1[1[] 97
float[][][] h;

Because of how array types are formed, the following parameter declarations have the same
array type:

void m(int @A [] @B [] x) {}
void n(int @A [] @B ... y) {}

And perhaps surprisingly, the following field declarations have the same array type:
int @A [] £ @B [];

int @B [] @A [] g;
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Once an array object is created, its length never changes. To make an array variable
refer to an array of different length, a reference to a different array must be assigned
to the variable.

A single variable of array type may contain references to arrays of different lengths,
because an array's length is not part of its type.

If an array variable v has type A[ ], where A is a reference type, then v can hold
a reference to an instance of any array type B[ ], provided B can be assigned to a
(§5.2). This may result in a run-time exception on a later assignment; see §10.5
for a discussion.

10.3 Array Creation

An array is created by an array creation expression (§15.10.1) or an array initializer
(810.6).

An array creation expression specifies the element type, the number of levels of
nested arrays, and the length of the array for at least one of the levels of nesting.
The array's length is available as a £inal instance variable length.

An array initializer creates an array and provides initial values for all its
components.

104 Array Access

A component of an array is accessed by an array access expression (§15.10.3) that
consists of an expression whose value is an array reference followed by an indexing
expression enclosed by [ and 1,as inA[ij.

All arrays are 0-origin. An array with length n can be indexed by the integers o
ton-1.

Example 104-1. Array Access

class Gauss {
public static void main(String[] args) {
int[] ia = new int[101];
for (int i = 0; i < ia.length; i++) ia[i] = i;
int sum = 0;
for (int e : ia) sum += e;
System.out.println(sum);

10.3
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}
This program produces the output:
5050

The program declares a variable ia that has type array of int, thatis, int[ ]. The variable
ia is initialized to reference a newly created array object, created by an array creation
expression (§15.10.1). The array creation expression specifies that the array should have
101 components. The length of the array is available using the field length, as shown.
The program fills the array with the integers from 0 to 100, sums these integers, and prints
the result.

Arrays must be indexed by int values; short, byte, or char values may also
be used as index values because they are subjected to unary numeric promotion
(§5.6.1) and become int values.

An attempt to access an array component with a long index value results in a
compile-time error.

All array accesses are checked at run time; an attempt to use an index that
is less than zero or greater than or equal to the length of the array causes an
ArrayIndexOutOfBoundsException to be thrown (§15.10.4).

10.5 Array Store Exception

For an array whose type is a[ 1, where A is a reference type, an assignment to
a component of the array is checked at run time to ensure that the value being
assigned is assignable to the component.

If the type of the value being assigned is not assignment-compatible (§5.2) with
the component type, an ArrayStoreException is thrown.

If the component type of an array were not reifiable (§4.7), the Java Virtual Machine could
not perform the store check described in the preceding paragraph. This is why an array
creation expression with a non-reifiable element type is forbidden (§15.10.1). One may
declare a variable of an array type whose element type is non-reifiable, but assignment of
the result of an array creation expression to the variable will necessarily cause an unchecked
warning (§5.1.9).

Example 10.5-1. ArrayStoreException

class Point { int x, y; }
class ColoredPoint extends Point { int color; }
class Test {

public static void main(String[] args) {
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ColoredPoint[] cpa = new ColoredPoint[10];
Point[] pa = cpa;
System.out.println(pa[l] == null);
try {
pa[0] = new Point();
} catch (ArrayStoreException e) {
System.out.println(e);

}

This program produces the output:

true
java.lang.ArrayStoreException: Point

The variable pa has type Point[ ] and the variable cpa has as its value a reference to an
object of type ColoredPoint[ ]. A ColoredPoint can be assigned to a Point; therefore,
the value of cpa can be assigned to pa.

A reference to this array pa, for example, testing whether pa[1] is null, will not result in
a run-time type error. This is because the element of the array of type ColoredPoint| ]
isa ColoredPoint, and every ColoredPoint can stand in for a Point, since Point is
the superclass of ColoredPoint.

On the other hand, an assignment to the array pa can result in a run-time error. At compile
time, an assignment to an element of pa is checked to make sure that the value assigned is a
Point.Butsince pa holds a reference to an array of ColoredPoint,the assignment is valid
only if the type of the value assigned at run time is, more specifically, a ColoredPoint.

The Java Virtual Machine checks for such a situation at run time to ensure that the
assignment is valid; if not, an ArrayStoreException is thrown.

10.6 Array Initializers

An array initializer may be specified in a field declaration (§8.3, §9.3) or local
variable declaration (§14.4), or as part of an array creation expression (§15.10.1),
to create an array and provide some initial values.

Arraylnitializer:
{ [VariablelnitializerList] [, ] }

VariablelnitializerList:
Variablelnitializer {, Variablelnitializer}

The following production from §8.3 is shown here for convenience:
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Variablelnitializer:
Expression
Arraylnitializer

An array initializer is written as a comma-separated list of expressions, enclosed
by braces { and }.

A trailing comma may appear after the last expression in an array initializer and
is ignored.

Each variable initializer must be assignment-compatible (§5.2) with the array's
component type, or a compile-time error occurs.

It is a compile-time error if the component type of the array being initialized is not
reifiable (§4.7).

The length of the array to be constructed is equal to the number of variable
initializers immediately enclosed by the braces of the array initializer. Space is
allocated for a new array of that length. If there is insufficient space to allocate
the array, evaluation of the array initializer completes abruptly by throwing an
outOfMemoryError. Otherwise, a one-dimensional array is created of the specified
length, and each component of the array is initialized to its default value (§4.12.5).

The variable initializers immediately enclosed by the braces of the array initializer
are then executed from left to right in the textual order they occur in the source
code. The n'th variable initializer specifies the value of the n-1'th array component.
If execution of a variable initializer completes abruptly, then execution of the array
initializer completes abruptly for the same reason. If all the variable initializer
expressions complete normally, the array initializer completes normally, with the
value of the newly initialized array.

If the component type is an array type, then the variable initializer specifying a
component may itself be an array initializer; that is, array initializers may be nested.
In this case, execution of the nested array initializer constructs and initializes an
array object by recursive application of the algorithm above, and assigns it to the
component.

Example 10.6-1. Array Initializers

class Test {
public static void main(String[] args) {
int ia[1[] = { {1, 2}, null };
for (int[] ea : ia) {
for (int e: ea) {
System.out.println(e);

}
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}
This program produces the output:

1
2

before causing a NullPointerException in trying to index the second component of the
array ia, which is a null reference.

10.7 Array Members

The members of an array type are all of the following:

* The public final field length, which contains the number of components of
the array. length may be positive or zero.

¢ The public method clone, which overrides the method of the same name in
class object and throws no checked exceptions. The return type of the clone
method of an array type T[] is T[].

A clone of a multidimensional array is shallow, which is to say that it creates
only a single new array. Subarrays are shared.

* All the members inherited from class object; the only method of object that is
not inherited is its clone method.

See §9.6.4 .4 for another situation where the difference between public and non-public
methods of Object requires special care.

An array thus has the same public fields and methods as the following class:

class A<T> implements Cloneable, java.io.Serializable {
public final int length = X;
public T[] clone() {
try {
return (T[])super.clone();
} catch (CloneNotSupportedException e) {
throw new InternalError(e.getMessage());

}
}

Note that the cast to T[ ] in the code above would generate an unchecked warning (§5.1.9)
if arrays were really implemented this way.

10.7
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Example 10.7-1. Arrays Are Cloneable

class Testl {
public static void main(String[] args) {
int ial[] = { 1, 2 };

int ia2[] = ial.clone();
System.out.print((ial == ia2) + " ");
ial[1l]++;

System.out.println(ia2[1]);
}
This program produces the output:

false 2

showing that the components of the arrays referenced by ial and ia2 are different
variables.

Example 10.7-2. Shared Subarrays After A Clone

The fact that subarrays are shared when a multidimensional array is cloned is shown by
this program:

class Test2 {
public static void main(String[] args) throws Throwable {
int ia[]r] = { {1,2}, null };

int ja[][] = ia.clone();
System.out.print((ia == ja) + " ");
System.out.println(ia[0] == ja[0] && ia[l] == ja[l]);

}
This program produces the output:
false true

showing that the int[ ] array thatis ia[0] and the int[ ] array thatis ja[ 0] are the same
array.

10.8 class Objects for Arrays
Every array has an associated class object, shared with all other arrays with the

same component type.

Although an array type is not a class, the class object of every array acts as if:
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* The direct superclass of every array type is object.

e Every array type implements the interfaces Cloneable and
java.io.Serializable.

Example 10.8-1. c1ass Object Of Array

class Testl {
public static void main(String[] args) {
int[] ia = new int[3];
System.out.println(ia.getClass());
System.out.println(ia.getClass().getSuperclass());
for (Class<?> c : ia.getClass().getInterfaces())
System.out.println("Superinterface: " + c);

This program produces the output:

class [I

class java.lang.Object

Superinterface: interface java.lang.Cloneable
Superinterface: interface java.io.Serializable

where the string "[I" is the run-time type signature for the Class object "array with
component type int".

Example 10.8-2. Array class Objects Are Shared

class Test2 {
public static void main(String[] args) {
int[] ia = new int[3];
int[] ib = new int[6];
System.out.println(ia == ib);
System.out.println(ia.getClass() == ib.getClass());

This program produces the output:

false
true

While ia and ib refer to different arrays, the result of the comparison of the Class objects
demonstrates that all arrays whose components are of type int are instances of the same
array type (namely int[]).
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10.9 An Array of Characters Is Not a string

In the Java programming language, unlike C, an array of char is not a String,
and neither a string nor an array of char is terminated by "\uoooo' (the NUL
character).

A string object is immutable, that is, its contents never change, while an array of
char has mutable elements.

The method toCharArray in class String returns an array of characters containing
the same character sequence as a String. The class StringBuffer implements useful
methods on mutable arrays of characters.



CHAPTER 11

Exceptions

U b HEN a program violates the semantic constraints of the Java programming
language, the Java Virtual Machine signals this error to the program as an
exception.

An example of such a violation is an attempt to index outside the bounds of an
array. Some programming languages and their implementations react to such errors
by peremptorily terminating the program; other programming languages allow an
implementation to react in an arbitrary or unpredictable way. Neither of these
approaches is compatible with the design goals of the Java SE platform: to provide
portability and robustness.

Instead, the Java programming language specifies that an exception will be thrown
when semantic constraints are violated and will cause a non-local transfer of control
from the point where the exception occurred to a point that can be specified by the
programmer.

An exception is said to be thrown from the point where it occurred and is said to
be caught at the point to which control is transferred.

Programs can also throw exceptions explicitly, using throw statements (§14.18).

Explicit use of throw statements provides an alternative to the old-fashioned style
of handling error conditions by returning funny values, such as the integer value
-1 where a negative value would not normally be expected. Experience shows that
too often such funny values are ignored or not checked for by callers, leading to
programs that are not robust, exhibit undesirable behavior, or both.

Every exception is represented by an instance of the class Throwable or one of its
subclasses (§11.1). Such an object can be used to carry information from the point
at which an exception occurs to the handler that catches it. Handlers are established
by catch clauses of try statements (§14.20).
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During the process of throwing an exception, the Java Virtual Machine abruptly
completes, one by one, any expressions, statements, method and constructor
invocations, initializers, and field initialization expressions that have begun but not
completed execution in the current thread. This process continues until a handler is
found that indicates that it handles that particular exception by naming the class of
the exception or a superclass of the class of the exception (§11.2). If no such handler
is found, then the exception may be handled by one of a hierarchy of uncaught
exception handlers (§11.3) - thus every effort is made to avoid letting an exception
go unhandled.

The exception mechanism of the Java SE platform is integrated with its
synchronization model (§17.1), so that monitors are unlocked as synchronized
statements (§14.19) and invocations of synchronized methods (§8.4.3.6, §15.12)
complete abruptly.

11.1 The Kinds and Causes of Exceptions

11.1.1 The Kinds of Exceptions

An exception is represented by an instance of the class Throwable (a direct subclass
of object) or one of its subclasses.

Throwable and all its subclasses are, collectively, the exception classes.
The classes Exception and Error are direct subclasses of Throwable:

* Exception is the superclass of all the exceptions from which ordinary programs
may wish to recover.

The class RuntimeException 1is a direct subclass of Exception.
RuntimeException is the superclass of all the exceptions which may be thrown
for many reasons during expression evaluation, but from which recovery may
still be possible.

RuntimeException and all its subclasses are, collectively, the run-time exception
classes.

* Error is the superclass of all the exceptions from which ordinary programs are
not ordinarily expected to recover.

Error and all its subclasses are, collectively, the error classes.

The unchecked exception classes are the run-time exception classes and the error
classes.
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The checked exception classes are all exception classes other than the unchecked
exception classes. That is, the checked exception classes are Throwable and all
its subclasses other than RuntimeException and its subclasses and Error and its
subclasses.

Programs can use the pre-existing exception classes of the Java SE platform API in throw
statements, or define additional exception classes as subclasses of Throwable or of any of
its subclasses, as appropriate. To take advantage of compile-time checking for exception
handlers (§11.2), it is typical to define most new exception classes as checked exception
classes, that is, as subclasses of Exception that are not subclasses of Runt imeException.

The class Error is a separate subclass of Throwable, distinct from Exception in the class
hierarchy, to allow programs to use the idiom "} catch (Exception e) {" (§11.2.3)
to catch all exceptions from which recovery may be possible without catching errors from
which recovery is typically not possible.

Note that a subclass of Throwable cannot be generic (§8.1.2).

11.1.2 The Causes of Exceptions

An exception is thrown for one of three reasons:
* A throw statement (§14.18) was executed.

* An abnormal execution condition was synchronously detected by the Java
Virtual Machine, namely:

— evaluation of an expression violates the normal semantics of the Java
programming language (§15.6), such as an integer divide by zero.

— an error occurs while loading, linking, or initializing part of the program
(812.2,812.3, §12.4); in this case, an instance of a subclass of L.inkageError
is thrown.

— an internal error or resource limitation prevents the Java Virtual Machine from
implementing the semantics of the Java programming language; in this case,
an instance of a subclass of virtualMachineError is thrown.

These exceptions are not thrown at an arbitrary point in the program, but rather at
a point where they are specified as a possible result of an expression evaluation
or statement execution.

* An asynchronous exception occurred (§11.1.3).
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11.1.3 Asynchronous Exceptions

Most exceptions occur synchronously as a result of an action by the thread in which
they occur, and at a point in the program that is specified to possibly result in such
an exception. An asynchronous exception is, by contrast, an exception that can
potentially occur at any point in the execution of a program.

Asynchronous exceptions occur only as a result of:
* Aninvocation of the (deprecated) stop method of class Thread or ThreadGroup.

The (deprecated) stop methods may be invoked by one thread to affect another
thread or all the threads in a specified thread group. They are asynchronous
because they may occur at any point in the execution of the other thread or
threads.

* Aninternal error or resource limitation in the Java Virtual Machine that prevents
it from implementing the semantics of the Java programming language. In this
case, the asynchronous exception that is thrown is an instance of a subclass of
VirtualMachineError.

Note that StackOverflowError, a subclass of VirtualMachineError, may be
thrown synchronously by method invocation (§15.12.4.5) as well as asynchronously
due to native method execution or Java Virtual Machine resource limitations.
Similarly, OutOfMemoryError, another subclass of VirtualMachineError, may be
thrown synchronously during class instance creation (§15.9.4, §12.5), array creation
(§15.10.2, §10.6), class initialization (§12.4.2), and boxing conversion (§5.1.7), as well
as asynchronously.

The Java SE platform permits a small but bounded amount of execution to occur
before an asynchronous exception is thrown.

Asynchronous exceptions are rare, but proper understanding of their semantics is necessary
if high-quality machine code is to be generated.

The delay noted above is permitted to allow optimized code to detect and throw these
exceptions at points where it is practical to handle them while obeying the semantics of
the Java programming language. A simple implementation might poll for asynchronous
exceptions at the point of each control transfer instruction. Since a program has a finite
size, this provides a bound on the total delay in detecting an asynchronous exception. Since
no asynchronous exception will occur between control transfers, the code generator has
some flexibility to reorder computation between control transfers for greater performance.
The paper Polling Efficiently on Stock Hardware by Marc Feeley, Proc. 1993 Conference
on Functional Programming and Computer Architecture, Copenhagen, Denmark, pp.
179-187, is recommended as further reading.
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11.2 Compile-Time Checking of Exceptions

The Java programming language requires that a program contains handlers for
checked exceptions which can result from execution of a method or constructor
(§8.4.6,§8.8.5). This compile-time checking for the presence of exception handlers
is designed to reduce the number of exceptions which are not properly handled. For
each checked exception which is a possible result, the throws clause for the method
or constructor must mention the class of that exception or one of the superclasses
of the class of that exception (§11.2.3).

The checked exception classes (§11.1.1) named in the throws clause are part of
the contract between the implementor and user of the method or constructor. The
throws clause of an overriding method may not specify that this method will result
in throwing any checked exception which the overridden method is not permitted,
by its throws clause, to throw (§8.4.8.3). When interfaces are involved, more than
one method declaration may be overridden by a single overriding declaration. In
this case, the overriding declaration must have a throws clause that is compatible
with all the overridden declarations (§9.4.1).

The unchecked exception classes (§11.1.1) are exempted from compile-time
checking.

Error classes are exempted because they can occur at many points in the program and
recovery from them is difficult or impossible. A program declaring such exceptions would
be cluttered, pointlessly. Sophisticated programs may yet wish to catch and attempt to
recover from some of these conditions.

Run-time exception classes are exempted because, in the judgment of the designers of the
Java programming language, having to declare such exceptions would not aid significantly
in establishing the correctness of programs. Many of the operations and constructs of the
Java programming language can result in exceptions at run time. The information available
to a Java compiler, and the level of analysis a compiler performs, are usually not sufficient
to establish that such run-time exceptions cannot occur, even though this may be obvious
to the programmer. Requiring such exception classes to be declared would simply be an
irritation to programmers.

For example, certain code might implement a circular data structure that, by construction,
can never involve null references; the programmer can then be certain that a
NullPointerException cannot occur, but it would be difficult for a Java compiler to
prove it. The theorem-proving technology that is needed to establish such global properties
of data structures is beyond the scope of this specification.

We say that a statement or expression can throw an exception class £ if, according
to the rules in §11.2.1 and §11.2.2, the execution of the statement or expression
can result in an exception of class £ being thrown.
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We say that a catch clause can catch its catchable exception class(es):

* The catchable exception class of a uni-catch clause is the declared type of its
exception parameter (§14.20).

* The catchable exception classes of a multi-catch clause are the alternatives in
the union that denotes the type of its exception parameter.

11.2.1 Exception Analysis of Expressions

A class instance creation expression (§15.9) can throw an exception class £ iff
either:

* The expression is a qualified class instance creation expression and the
qualifying expression can throw E; or

* Some expression of the argument list can throw E; or

* Eis one of the exception types of the invocation type of the chosen constructor
(§15.12.2.6); or

* The class instance creation expression includes a ClassBody, and some instance
initializer or instance variable initializer in the ClassBody can throw E.

A method invocation expression (§15.12) can throw an exception class £ iff either:

* The method invocation expression is of the form Primary . [TypeArguments]
Identifier and the Primary expression can throw E; or

* Some expression of the argument list can throw E; or

* £ is one of the exception types of the invocation type of the chosen method
(815.12.2.6).

A lambda expression (§15.27) can throw no exception classes.

For every other kind of expression, the expression can throw an exception class
iff one of its immediate subexpressions can throw E.

Note that a method reference expression (§15.13) of the form Primary : : [TypeArguments]
Identifier can throw an exception class if the Primary subexpression can throw an
exception class. In contrast, a lambda expression can throw nothing, and has no immediate
subexpressions on which to perform exception analysis. It is the body of a lambda
expression, containing expressions and statements, that can throw exception classes.
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11.2.2 Exception Analysis of Statements

A throw statement (§14.18) whose thrown expression has static type £ and is not
a final or effectively final exception parameter can throw E or any exception class
that the thrown expression can throw.

For example, the statement throw new java.io.FileNotFoundException(); can
throw java.io.FileNotFoundException only. Formally, it is not the case that it "can
throw" a subclass or superclass of java.io.FileNotFoundException.

A throw statement whose thrown expression is a final or effectively final exception
parameter of a catch clause ¢ can throw an exception class E iff:

* Eis an exception class that the try block of the try statement which declares
¢ can throw; and

* Eis assignment compatible with any of c's catchable exception classes; and

* Eis not assignment compatible with any of the catchable exception classes of the
catch clauses declared to the left of ¢ in the same try statement.

A try statement (§14.20) can throw an exception class £ iff either:

* The try block can throw E, or an expression used to initialize a resource (in a
try-with-resources statement) can throw E, or the automatic invocation of the
close () method of a resource (in a try-with-resources statement) can throw E,
and E is not assignment compatible with any catchable exception class of any
catch clause of the try statement, and either no £inally block is present or the
finally block can complete normally; or

e Some catch block of the try statement can throw E and either no £inally block
is present or the £inally block can complete normally; or

* A finally block is present and can throw E.

An explicit constructor invocation statement (§8.8.7.1) can throw an exception
class E iff either:

* Some expression of the constructor invocation's parameter list can throw E; or

* Eis determined to be an exception class of the throws clause of the constructor
that is invoked (§15.12.2.6).

Any other statement S can throw an exception class iff an expression or statement
immediately contained in S can throw E.
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11.2.3 Exception Checking

Itis a compile-time error if a method or constructor body can throw some exception
class £ when E is a checked exception class and E is not a subclass of some class
declared in the throws clause of the method or constructor.

It is a compile-time error if a lambda body can throw some exception class £ when
Eis a checked exception class and £ is not a subclass of some class declared in the
throws clause of the function type targeted by the lambda expression.

It is a compile-time error if a class variable initializer (§8.3.2) or static initializer
(§8.7) of a named class or interface can throw a checked exception class.

It is a compile-time error if an instance variable initializer (§8.3.2) or instance
initializer (§8.6) of a named class can throw a checked exception class, unless
the named class has at least one explicitly declared constructor and the exception
class or one of its superclasses is explicitly declared in the throws clause of each
constructor.

Note that no compile-time error is due if an instance variable initializer or instance initializer
of an anonymous class (§15.9.5) can throw an exception class. In a named class, it is
the responsibility of the programmer to propagate information about which exception
classes can be thrown by initializers, by declaring a suitable throws clause on any explicit
constructor declaration. This relationship between the checked exception classes thrown
by a class's initializers and the checked exception classes declared by a class's constructors
is assured for an anonymous class declaration, because no explicit constructor declarations
are possible and a Java compiler always generates a constructor with a suitable throws
clause for the anonymous class declaration based on the checked exception classes that its
initializers can throw.

It is a compile-time error if a catch clause can catch checked exception class E;
and it is not the case that the try block corresponding to the catch clause can
throw a checked exception class that is a subclass or superclass of £;, unless £; is
Exception or a superclass of Exception.

It is a compile-time error if a catch clause can catch an exception class £; and a
preceding catch clause of the immediately enclosing try statement can catch E;
or a superclass of ;.

A Java compiler is encouraged to issue a warning if a catch clause can catch checked
exception class E; and the try block corresponding to the catch clause can throw checked
exception class E,, where E, <: E;, and a preceding catch clause of the immediately
enclosing try statement can catch checked exception class E3, where E; <: E3<: Ej.

Example 11.2.3-1. Catching Checked Exceptions

import java.io.*;
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class StaticallyThrownExceptionsIncludeSubtypes {
public static void main(String[] args) {
try {
throw new FileNotFoundException();
} catch (IOException ioe) {
// "catch IOException" catches IOException
// and any subtype.

try {
throw new FileNotFoundException();
// Statement "can throw" FileNotFoundException.
// It is not the case that statement "can throw"
// a subtype or supertype of FileNotFoundException.
} catch (FileNotFoundException fnfe) {
// ... Handle exception ...
} catch (IOException ioe) {
// Legal, but compilers are encouraged to give
// warnings as of Java SE 7, because all subtypes of
// IOException that the try block "can throw" have
// already been caught by the prior catch clause.

try {
m();
// m's declaration says "throws IOException", so
// m "can throw" IOException. It is not the case
// that m "can throw" a subtype or supertype of
// IOException (e.g. Exception).
} catch (FileNotFoundException fnfe) {
// Legal, because the dynamic type of the exception
// might be FileNotFoundException.
} catch (IOException ioe) {
// Legal, because the dynamic type of the exception
// might be a different subtype of IOException.
} catch (Throwable t) {
// Can always catch Throwable.

static void m() throws IOException {
throw new FileNotFoundException();

By the rules above, each alternative in a multi-catch clause (§14.20) must be able to catch
some exception class thrown by the try block and uncaught by previous catch clauses.
For example, the second catch clause below would cause a compile-time error because
exception analysis determines that SubclassOfFoo is already caught by the first catch
clause:
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try { ... }
catch (Foo f) { ... }
catch (Bar | SubclassOfFoo e) { ... }

11.3 Run-Time Handling of an Exception

When an exception is thrown (§14.18), control is transferred from the code that
caused the exception to the nearest dynamically enclosing catch clause, if any, of
a try statement (§14.20) that can handle the exception.

A statement or expression is dynamically enclosed by a catch clause if it appears
within the try block of the try statement of which the catch clause is a part, or
if the caller of the statement or expression is dynamically enclosed by the catch
clause.

The caller of a statement or expression depends on where it occurs:

e If within a method, then the caller is the method invocation expression (§15.12)
that was executed to cause the method to be invoked.

e If within a constructor or an instance initializer or the initializer for an instance
variable, then the caller is the class instance creation expression (§15.9) or the
method invocation of newInstance that was executed to cause an object to be
created.

¢ If within a static initializer or an initializer for a static variable, then the caller
is the expression that used the class or interface so as to cause it to be initialized
(§12.4).

Whether a particular catch clause can handle an exception is determined by
comparing the class of the object that was thrown to the catchable exception classes
of the catch clause. The catch clause can handle the exception if one of its
catchable exception classes is the class of the exception or a superclass of the class
of the exception.

Equivalently, a catch clause will catch any exception object that is an instanceof
(§15.20.2) one of its catchable exception classes.

The control transfer that occurs when an exception is thrown causes abrupt
completion of expressions (§15.6) and statements (§14.1) until a catch clause is
encountered that can handle the exception; execution then continues by executing
the block of that catch clause. The code that caused the exception is never resumed.
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All exceptions (synchronous and asynchronous) are precise: when the transfer of
control takes place, all effects of the statements executed and expressions evaluated
before the point from which the exception is thrown must appear to have taken
place. No expressions, statements, or parts thereof that occur after the point from
which the exception is thrown may appear to have been evaluated.

If optimized code has speculatively executed some of the expressions or statements which
follow the point at which the exception occurs, such code must be prepared to hide this
speculative execution from the user-visible state of the program.

If no catch clause that can handle an exception can be found, then the current thread
(the thread that encountered the exception) is terminated. Before termination, all
finally clauses are executed and the uncaught exception is handled according to
the following rules:

e If the current thread has an uncaught exception handler set, then that handler is
executed.

¢ Otherwise, the method uncaughtException is invoked for the ThreadGroup
that is the parent of the current thread. If the ThreadGroup and its parent
ThreadGroups do not override uncaughtException, then the default handler's
uncaughtException method is invoked.

In situations where it is desirable to ensure that one block of code is always executed
after another, even if that other block of code completes abruptly, a try statement with a
finally clause (§14.20.2) may be used.

If a try or catch block in a try-finally or try-catch-finally statement completes
abruptly, then the £inally clause is executed during propagation of the exception, even
if no matching catch clause is ultimately found.

If a finally clause is executed because of abrupt completion of a try block and the
finally clause itself completes abruptly, then the reason for the abrupt completion of the
try block is discarded and the new reason for abrupt completion is propagated from there.

The exact rules for abrupt completion and for the catching of exceptions are specified
in detail with the specification of each statement in §14 (Blocks and Statements) and for
expressions in §15 (Expressions) (especially §15.6).

Example 11.3-1. Throwing and Catching Exceptions

The following program declares an exception class TestException. The main method
of class Test invokes the thrower method four times, causing exceptions to be thrown
three of the four times. The try statement in method main catches each exception that
the thrower throws. Whether the invocation of thrower completes normally or abruptly,
a message is printed describing what happened.
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class TestException extends Exception {
TestException() { super(); }
TestException(String s) { super(s); }

class Test {
public static void main(String[] args) {
for (String arg : args) {
try {
thrower (argqg);
System.out.println("Test \"" + arg +
"\" didn't throw an exception");
} catch (Exception e) {
System.out.println("Test \"" + arg +
"\" threw a " + e.getClass() +

"\n with message: " +
e.getMessage());
}
}
}
static int thrower(String s) throws TestException {
try {
if (s.equals("divide")) {
int 1 = 0;
return i/i;
}
if (s.equals("null")) {
s = null;
return s.length();
}
if (s.equals("test")) {
throw new TestException("Test message");
}
return 0;
} finally {
System.out.println("[thrower(\"" + s + "\") done]");
}
}

If we execute the program, passing it the arguments:
divide null not test

it produces the output:
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[thrower ("divide") done]

Test "divide" threw a class java.lang.ArithmeticException
with message: / by zero

[thrower ("null") done]

Test "null" threw a class java.lang.NullPointerException
with message: null

[thrower ("not") done]

Test "not" didn't throw an exception

[thrower("test") done]

Test "test" threw a class TestException
with message: Test message

The declaration of the method thrower must have a throws clause because it can throw
instances of TestException, which is a checked exception class (§11.1.1). A compile-
time error would occur if the throws clause were omitted.

Notice that the £inally clause is executed on every invocation of thrower, whether or

not an exception occurs, as shown by the "[thrower(...) done]" output that occurs
for each invocation.
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CHAPTER 12

Execution

THIS chapter specifies activities that occur during execution of a program. It is
organized around the life cycle of the Java Virtual Machine and of the classes,
interfaces, and objects that form a program.

The Java Virtual Machine starts up by loading a specified class and then invoking
the method main in this specified class. Section §12.1 outlines the loading, linking,
and initialization steps involved in executing main, as an introduction to the
concepts in this chapter. Further sections specify the details of loading (§12.2),
linking (§12.3), and initialization (§12.4).

The chapter continues with a specification of the procedures for creation of new
class instances (§12.5); and finalization of class instances (§12.6). It concludes by
describing the unloading of classes (§12.7) and the procedure followed when a
program exits (§12.8).

12.1 Java Virtual Machine Startup

The Java Virtual Machine starts execution by invoking the method main of some
specified class, passing it a single argument, which is an array of strings. In the
examples in this specification, this first class is typically called Test.

The precise semantics of Java Virtual Machine startup are given in Chapter 5 of
The Java Virtual Machine Specification, Java SE 8 Edition. Here we present an
overview of the process from the viewpoint of the Java programming language.

The manner in which the initial class is specified to the Java Virtual Machine is
beyond the scope of this specification, but it is typical, in host environments that
use command lines, for the fully-qualified name of the class to be specified as a
command-line argument and for following command-line arguments to be used as
strings to be provided as the argument to the method main.

357



12.1

358

Java Virtual Machine Startup EXECUTION

For example, in a UNIX implementation, the command line:
java Test reboot Bob Dot Enzo

will typically start a Java Virtual Machine by invoking method main of class Test (a class
in an unnamed package), passing it an array containing the four strings "reboot", "Bob",
"Dot", and "Enzo".

We now outline the steps the Java Virtual Machine may take to execute Test, as
an example of the loading, linking, and initialization processes that are described
further in later sections.

12.1.1 Load the Class Test

The initial attempt to execute the method main of class Test discovers that the class
Test is not loaded - that is, that the Java Virtual Machine does not currently contain
a binary representation for this class. The Java Virtual Machine then uses a class
loader to attempt to find such a binary representation. If this process fails, then an
error is thrown. This loading process is described further in §12.2.

12.1.2 Link Test: Verify, Prepare, (Optionally) Resolve

After Test is loaded, it must be initialized before main can be invoked. And Test,
like all (class or interface) types, must be linked before it is initialized. Linking
involves verification, preparation, and (optionally) resolution. Linking is described
further in §12.3.

Verification checks that the loaded representation of Test is well-formed, with a
proper symbol table. Verification also checks that the code that implements Test
obeys the semantic requirements of the Java programming language and the Java
Virtual Machine. If a problem is detected during verification, then an error is
thrown. Verification is described further in §12.3.1.

Preparation involves allocation of static storage and any data structures that are
used internally by the implementation of the Java Virtual Machine, such as method
tables. Preparation is described further in §12.3.2.

Resolution is the process of checking symbolic references from Test to other
classes and interfaces, by loading the other classes and interfaces that are mentioned
and checking that the references are correct.

The resolution step is optional at the time of initial linkage. An implementation may
resolve symbolic references from a class or interface that is being linked very early,
even to the point of resolving all symbolic references from the classes and interfaces
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that are further referenced, recursively. (This resolution may result in errors from
these further loading and linking steps.) This implementation choice represents one
extreme and is similar to the kind of "static" linkage that has been done for many
years in simple implementations of the C language. (In these implementations,
a compiled program is typically represented as an "a.out" file that contains a
fully-linked version of the program, including completely resolved links to library
routines used by the program. Copies of these library routines are included in the
"a.out" file.)

An implementation may instead choose to resolve a symbolic reference only when
it is actively used; consistent use of this strategy for all symbolic references would
represent the "laziest" form of resolution. In this case, if Test had several symbolic
references to another class, then the references might be resolved one at a time,
as they are used, or perhaps not at all, if these references were never used during
execution of the program.

The only requirement on when resolution is performed is that any errors detected
during resolution must be thrown at a point in the program where some action
is taken by the program that might, directly or indirectly, require linkage to the
class or interface involved in the error. Using the "static" example implementation
choice described above, loading and linkage errors could occur before the program
is executed if they involved a class or interface mentioned in the class Test or
any of the further, recursively referenced, classes and interfaces. In a system that
implemented the "laziest" resolution, these errors would be thrown only when an
incorrect symbolic reference is actively used.

The resolution process is described further in §12.3.3.

12.1.3 [Initialize Test: Execute Initializers

In our continuing example, the Java Virtual Machine is still trying to execute the
method main of class Test. This is permitted only if the class has been initialized
(§12.4.1).

Initialization consists of execution of any class variable initializers and static
initializers of the class Test, in textual order. But before Test can be initialized,
its direct superclass must be initialized, as well as the direct superclass of its direct
superclass, and so on, recursively. In the simplest case, Test has object as its
implicit direct superclass; if class object has not yet been initialized, then it must
be initialized before Test is initialized. Class object has no superclass, so the
recursion terminates here.

12.1
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If class Test has another class super as its superclass, then Super must be
initialized before Test. This requires loading, verifying, and preparing super if
this has not already been done and, depending on the implementation, may also
involve resolving the symbolic references from super and so on, recursively.

Initialization may thus cause loading, linking, and initialization errors, including
such errors involving other types.

The initialization process is described further in §12.4.

12.1.4 Invoke Test.main

Finally, after completion of the initialization for class Test (during which other
consequential loading, linking, and initializing may have occurred), the method
main of Test is invoked.

The method main must be declared public, static, and void. It must specify a
formal parameter (§8.4.1) whose declared type is array of string. Therefore, either
of the following declarations is acceptable:

public static void main(String[] args)

public static void main(String... args)

12.2 Loading of Classes and Interfaces

Loading refers to the process of finding the binary form of a class or interface type
with a particular name, perhaps by computing it on the fly, but more typically by
retrieving a binary representation previously computed from source code by a Java
compiler, and constructing, from that binary form, a class object to represent the
class or interface.

The precise semantics of loading are given in Chapter 5 of The Java Virtual
Machine Specification, Java SE 8 Edition. Here we present an overview of the
process from the viewpoint of the Java programming language.

The binary format of a class or interface is normally the class file format described
in The Java Virtual Machine Specification, Java SE 8 Edition cited above, but other
formats are possible, provided they meet the requirements specified in §13.1. The
method definecClass of class ClassLoader may be used to construct class objects
from binary representations in the class file format.

Well-behaved class loaders maintain these properties:
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* Given the same name, a good class loader should always return the same class
object.

* If a class loader z1 delegates loading of a class c to another loader z2, then for
any type T that occurs as the direct superclass or a direct superinterface of ¢, or
as the type of a field in c, or as the type of a formal parameter of a method or
constructor in ¢, or as a return type of a method in ¢, £1 and 2 should return
the same class object.

A malicious class loader could violate these properties. However, it could not
undermine the security of the type system, because the Java Virtual Machine guards
against this.

For further discussion of these issues, see The Java Virtual Machine Specification, Java
SE 8 Edition and the paper Dynamic Class Loading in the Java Virtual Machine, by Sheng
Liang and Gilad Bracha, in Proceedings of OOPSLA '98, published as ACM SIGPLAN
Notices,Volume 33, Number 10, October 1998, pages 36-44. A basic principle of the design
of the Java programming language is that the run-time type system cannot be subverted
by code written in the Java programming language, not even by implementations of such
otherwise sensitive system classes as ClassLoader and SecurityManager.

12.2.1 The Loading Process

The loading process is implemented by the class classLoader and its subclasses.

Different subclasses of classLoader may implement different loading policies. In
particular, a class loader may cache binary representations of classes and interfaces,
prefetch them based on expected usage, or load a group of related classes together.
These activities may not be completely transparent to a running application if, for
example, a newly compiled version of a class is not found because an older version
is cached by a class loader. It is the responsibility of a class loader, however, to
reflect loading errors only at points in the program where they could have arisen
without prefetching or group loading.

If an error occurs during class loading, then an instance of one of the following
subclasses of class LinkageError will be thrown at any point in the program that
(directly or indirectly) uses the type:

* ClassCircularityError: A class or interface could not be loaded because it
would be its own superclass or superinterface (§8.1.4, §9.1.3, §13.4.4).

* ClassFormatError: The binary data that purports to specify a requested
compiled class or interface is malformed.

* NoClassDefFoundError: No definition for a requested class or interface could
be found by the relevant class loader.
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Because loading involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3 Linking of Classes and Interfaces

Linking is the process of taking a binary form of a class or interface type and
combining it into the run-time state of the Java Virtual Machine, so that it can be
executed. A class or interface type is always loaded before it is linked.

Three different activities are involved in linking: verification, preparation, and
resolution of symbolic references.

The precise semantics of linking are given in Chapter 5 of The Java Virtual
Machine Specification, Java SE 8 Edition. Here we present an overview of the
process from the viewpoint of the Java programming language.

This specification allows an implementation flexibility as to when linking activities
(and, because of recursion, loading) take place, provided that the semantics of the
Java programming language are respected, that a class or interface is completely
verified and prepared before it is initialized, and that errors detected during linkage
are thrown at a point in the program where some action is taken by the program
that might require linkage to the class or interface involved in the error.

For example, an implementation may choose to resolve each symbolic reference
in a class or interface individually, only when it is used (lazy or late resolution), or
to resolve them all at once while the class is being verified (static resolution). This
means that the resolution process may continue, in some implementations, after a
class or interface has been initialized.

Because linking involves the allocation of new data structures, it may fail with an
OutOfMemoryError.

12.3.1 Verification of the Binary Representation

Verification ensures that the binary representation of a class or interface is
structurally correct. For example, it checks that every instruction has a valid
operation code; that every branch instruction branches to the start of some other
instruction, rather than into the middle of an instruction; that every method is
provided with a structurally correct signature; and that every instruction obeys the
type discipline of the Java Virtual Machine language.
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If an error occurs during verification, then an instance of the following subclass
of class LinkageError will be thrown at the point in the program that caused the
class to be verified:

* verifyError: The binary definition for a class or interface failed to pass a set of
required checks to verify that it obeys the semantics of the Java Virtual Machine
language and that it cannot violate the integrity of the Java Virtual Machine. (See
§134.2,813.44,813.4.9,and §13.4.17 for some examples.)

12.3.2 Preparation of a Class or Interface Type

Preparation involves creating the static fields (class variables and constants) for
a class or interface and initializing such fields to the default values (§4.12.5). This
does not require the execution of any source code; explicit initializers for static
fields are executed as part of initialization (§12.4), not preparation.

Implementations of the Java Virtual Machine may precompute additional data structures
at preparation time in order to make later operations on a class or interface more efficient.
One particularly useful data structure is a "method table" or other data structure that allows
any method to be invoked on instances of a class without requiring a search of superclasses
at invocation time.

12.3.3 Resolution of Symbolic References

The binary representation of a class or interface references other classes and
interfaces and their fields, methods, and constructors symbolically, using the binary
names (§13.1) of the other classes and interfaces (§13.1). For fields and methods,
these symbolic references include the name of the class or interface type of which
the field or method is a member, as well as the name of the field or method itself,
together with appropriate type information.

Before a symbolic reference can be used it must undergo resolution, wherein a
symbolic reference is checked to be correct and, typically, replaced with a direct
reference that can be more efficiently processed if the reference is used repeatedly.

If an error occurs during resolution, then an error will be thrown. Most
typically, this will be an instance of one of the following subclasses of the class
IncompatibleClassChangeError, but it may also be an instance of some other
subclass of IncompatibleClassChangeError Or even an instance of the class
IncompatibleClassChangeError itself. This error may be thrown at any point in
the program that uses a symbolic reference to the type, directly or indirectly:

* IllegalAccessError: A symbolic reference has been encountered that specifies
a use or assignment of a field, or invocation of a method, or creation of an

12.3
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instance of a class, to which the code containing the reference does not have
access because the field or method was declared with private, protected, or
package access (not public), or because the class was not declared public.

This can occur, for example, if a field that is originally declared public is changed to
be private after another class that refers to the field has been compiled (§13.4.7).
* InstantiationError: A symbolic reference has been encountered that is used
in class instance creation expression, but an instance cannot be created because
the reference turns out to refer to an interface or to an abstract class.

This can occur, for example, if a class that is originally not abstract is changed to
be abstract after another class that refers to the class in question has been compiled
(§13.4.1).
* NoSuchFieldError: A symbolic reference has been encountered that refers to a
specific field of a specific class or interface, but the class or interface does not
contain a field of that name.

This can occur, for example, if a field declaration was deleted from a class after another
class that refers to the field was compiled (§13.4.8).
* NoSuchMethodError: A symbolic reference has been encountered that refers to
a specific method of a specific class or interface, but the class or interface does
not contain a method of that signature.

This can occur, for example, if a method declaration was deleted from a class after
another class that refers to the method was compiled (§13.4.12).
Additionally, an UnsatisfiedLinkError, a subclass of LinkageError, may be
thrown if a class declares a native method for which no implementation can be
found. The error will occur if the method is used, or earlier, depending on what
kind of resolution strategy is being used by an implementation of the Java Virtual
Machine (§12.3).

12.4 Initialization of Classes and Interfaces

Initialization of a class consists of executing its static initializers and the initializers
for static fields (class variables) declared in the class.

Initialization of an interface consists of executing the initializers for fields
(constants) declared in the interface.
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12.4.1 When Initialization Occurs

A class or interface type T will be initialized immediately before the first occurrence
of any one of the following:

¢ 7is aclass and an instance of Tis created.
* A static method declared by Tis invoked.

* A static field declared by T is assigned.

A static field declared by T is used and the field is not a constant variable
(§4.12.4).

* Tis atop level class (§7.6) and an assert statement (§14.10) lexically nested
within 7 (§8.1.3) is executed.

When a class is initialized, its superclasses are initialized (if they have not been
previously initialized), as well as any superinterfaces (§8.1.5) that declare any
default methods (§9.4.3) (if they have not been previously initialized). Initialization
of an interface does not, of itself, cause initialization of any of its superinterfaces.

A reference to a static field (§8.3.1.1) causes initialization of only the class or
interface that actually declares it, even though it might be referred to through the
name of a subclass, a subinterface, or a class that implements an interface.

Invocation of certain reflective methods in class class and in package
java.lang.reflect also causes class or interface initialization.

A class or interface will not be initialized under any other circumstance.

Note that a compiler may generate synthetic default methods in an interface, that is, default
methods that are neither explicitly nor implicitly declared (§13.1). Such methods will
trigger the interface's initialization despite the source code giving no indication that the
interface should be initialized.

The intent is that a class or interface type has a set of initializers that put it in a
consistent state, and that this state is the first state that is observed by other classes.
The static initializers and class variable initializers are executed in textual order,
and may not refer to class variables declared in the class whose declarations appear
textually after the use, even though these class variables are in scope (§8.3.3).
This restriction is designed to detect, at compile time, most circular or otherwise
malformed initializations.

The fact that initialization code is unrestricted allows examples to be constructed
where the value of a class variable can be observed when it still has its initial default
value, before its initializing expression is evaluated, but such examples are rare in
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practice. (Such examples can be also constructed for instance variable initialization
(§12.5).) The full power of the Java programming language is available in these
initializers; programmers must exercise some care. This power places an extra
burden on code generators, but this burden would arise in any case because the
Java programming language is concurrent (§12.4.2).

Example 12.4.1-1. Superclasses Are Initialized Before Subclasses

class Super {
static { System.out.print("Super "); }
}
class One {
static { System.out.print("One "); }
}
class Two extends Super {
static { System.out.print("Two "); }
}
class Test {
public static void main(String[] args) {
One o = null;
Two t = new Two();
System.out.println((Object)o == (Object)t);

This program produces the output:
Super Two false

The class oOne is never initialized, because it not used actively and therefore is never linked
to. The class Two is initialized only after its superclass Super has been initialized.

Example 12.4.1-2. Only The Class That Declares static Field Is Initialized

class Super {
static int taxi = 1729;
}
class Sub extends Super {
static { System.out.print("Sub "); }
}
class Test {
public static void main(String[] args) {
System.out.println(Sub.taxi);
}

This program prints only:

1729
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because the class Sub is never initialized; the reference to Sub.taxi is a reference to a
field actually declared in class Super and does not trigger initialization of the class Sub.

Example 12.4.1-3. Interface Initialization Does Not Initialize Superinterfaces

interface I {
int i = 1, ii = Test.out("ii", 2);
}
interface J extends I {
int j = Test.out("j", 3), Jjj = Test.out("jj", 4);
}
interface K extends J {
int k = Test.out("k", 5);
}
class Test {
public static void main(String[] args) {
System.out.println(J.i);
System.out.println(K.j);

}

static int out(String s, int i) {
System.out.println(s + "=" + i);
return i;

}

This program produces the output:

w e =
(]

The reference to J. i is to a field that is a constant variable (§4.12.4); therefore, it does not
cause I to be initialized (§13.4.9).

The reference to K. j is a reference to a field actually declared in interface J that is not a
constant variable; this causes initialization of the fields of interface J, but not those of its
superinterface I, nor those of interface K.

Despite the fact that the name X is used to refer to field j of interface J, interface K is not
initialized.

12.4.2 Detailed Initialization Procedure

Because the Java programming language is multithreaded, initialization of a class
or interface requires careful synchronization, since some other thread may be trying
to initialize the same class or interface at the same time. There is also the possibility
that initialization of a class or interface may be requested recursively as part of the
initialization of that class or interface; for example, a variable initializer in class a
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might invoke a method of an unrelated class B, which might in turn invoke a method
of class a. The implementation of the Java Virtual Machine is responsible for
taking care of synchronization and recursive initialization by using the following
procedure.

The procedure assumes that the class object has already been verified and
prepared, and that the class object contains state that indicates one of four
situations:

This class object is verified and prepared but not initialized.

This class object is being initialized by some particular thread 7.

This class object is fully initialized and ready for use.

This class object is in an erroneous state, perhaps because initialization was
attempted and failed.

For each class or interface c, there is a unique initialization lock rc. The mapping
from c to zc is left to the discretion of the Java Virtual Machine implementation.
The procedure for initializing c is then as follows:

1. Synchronize on the initialization lock, Lc, for c. This involves waiting until the
current thread can acquire LcC.

2. Ifthe class object for cindicates that initialization is in progress for c by some
other thread, then release rc and block the current thread until informed that
the in-progress initialization has completed, at which time repeat this step.

3. If the class object for c indicates that initialization is in progress for c by the
current thread, then this must be a recursive request for initialization. Release
zc and complete normally.

4. 1If the class object for ¢ indicates that c has already been initialized, then no
further action is required. Release rc and complete normally.

5. If the class object for c is in an erroneous state, then initialization is not
possible. Release rc and throw a NoClassDefFoundError.

6. Otherwise, record the fact that initialization of the class object for c is in
progress by the current thread, and release Lc.

Then, initialize the static fields of ¢ which are constant variables (§4.12 4,
§8.3.2,89.3.1).

7. Next, if cis a class rather than an interface, and its superclass has not yet been
initialized, then let sc be its superclass and let s1;, ..., ST, be all superinterfaces
of c that declare at least one default method. The order of superinterfaces is
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10.

11.

12.

given by a recursive enumeration over the superinterface hierarchy of each
interface directly implemented by c (in the left-to-right order of €'s implements
clause). For each interface 1 directly implemented by c, the enumeration recurs
on I's superinterfaces (in the left-to-right order of 1's extends clause) before
returning I.

Foreach sinthelist[ sc, 514, ..., 51, ], recursively perform this entire procedure
for s. If necessary, verify and prepare s first.

If the initialization of s completes abruptly because of a thrown exception, then
acquire Lc, label the class object for ¢ as erroneous, notify all waiting threads,
release Lc, and complete abruptly, throwing the same exception that resulted
from initializing s.

Next, determine whether assertions are enabled (§14.10) for ¢ by querying its
defining class loader.

Next, execute either the class variable initializers and static initializers of the
class, or the field initializers of the interface, in textual order, as though they
were a single block.

If the execution of the initializers completes normally, then acquire Lc, label
the class object for c as fully initialized, notify all waiting threads, release zc,
and complete this procedure normally.

Otherwise, the initializers must have completed abruptly by throwing some
exception E. If the class of £ is not Error or one of its subclasses, then create
a new instance of the class ExceptionInInitializerError, with E as the
argument, and use this object in place of £ in the following step. If a new
instance of ExceptionInInitializerError cannot be created because an
outOfMemoryError occurs, then instead use an outofMemoryError object in
place of £ in the following step.

Acquire rc, label the class object for ¢ as erroneous, notify all waiting
threads, release rc, and complete this procedure abruptly with reason £ or its
replacement as determined in the previous step.

An implementation may optimize this procedure by eliding the lock acquisition in step 1
(and release in step 4/5) when it can determine that the initialization of the class has already
completed, provided that, in terms of the memory model, all happens-before orderings that
would exist if the lock were acquired, still exist when the optimization is performed.

Code generators need to preserve the points of possible initialization of a class or interface,
inserting an invocation of the initialization procedure just described. If this initialization
procedure completes normally and the Class object is fully initialized and ready for use,
then the invocation of the initialization procedure is no longer necessary and it may be
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eliminated from the code - for example, by patching it out or otherwise regenerating the
code.

Compile-time analysis may, in some cases, be able to eliminate many of the checks
that a type has been initialized from the generated code, if an initialization order for a
group of related types can be determined. Such analysis must, however, fully account for
concurrency and for the fact that initialization code is unrestricted.

12.5 Creation of New Class Instances

A new class instance is explicitly created when evaluation of a class instance
creation expression (§15.9) causes a class to be instantiated.

A new class instance may be implicitly created in the following situations:

* Loading of a class or interface that contains a string literal (§3.10.5) may create
a new string object to represent that literal. (This might not occur if the same
String has previously been interned (§3.10.5).)

* Execution of an operation that causes boxing conversion (§5.1.7). Boxing
conversion may create a new object of a wrapper class associated with one of
the primitive types.

» Execution of a string concatenation operator + (§15.18.1) that is not part of a
constant expression (§15.28) always creates a new string object to represent the
result. String concatenation operators may also create temporary wrapper objects
for a value of a primitive type.

 Evaluation of a method reference expression (§15.13.3) or a lambda expression
(§15.27.4) may require that a new instance of a class that implements a functional
interface type be created.

Each of these situations identifies a particular constructor (§8.8) to be called with
specified arguments (possibly none) as part of the class instance creation process.

Whenever a new class instance is created, memory space is allocated for it with
room for all the instance variables declared in the class type and all the instance
variables declared in each superclass of the class type, including all the instance
variables that may be hidden (§8.3).

If there is not sufficient space available to allocate memory for the object, then
creation of the class instance completes abruptly with an outofMemoryError.
Otherwise, all the instance variables in the new object, including those declared in
superclasses, are initialized to their default values (§4.12.5).
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Just before a reference to the newly created object is returned as the result, the
indicated constructor is processed to initialize the new object using the following
procedure:

1.

Assign the arguments for the constructor to newly created parameter variables
for this constructor invocation.

If this constructor begins with an explicit constructor invocation (§8.8.7.1) of
another constructor in the same class (using this), then evaluate the arguments
and process that constructor invocation recursively using these same five
steps. If that constructor invocation completes abruptly, then this procedure
completes abruptly for the same reason; otherwise, continue with step 5.

This constructor does not begin with an explicit constructor invocation of
another constructor in the same class (using this). If this constructor is for
a class other than object, then this constructor will begin with an explicit
or implicit invocation of a superclass constructor (using super). Evaluate the
arguments and process that superclass constructor invocation recursively using
these same five steps. If that constructor invocation completes abruptly, then
this procedure completes abruptly for the same reason. Otherwise, continue
with step 4.

Execute the instance initializers and instance variable initializers for this class,
assigning the values of instance variable initializers to the corresponding
instance variables, in the left-to-right order in which they appear textually in
the source code for the class. If execution of any of these initializers results
in an exception, then no further initializers are processed and this procedure
completes abruptly with that same exception. Otherwise, continue with step 5.

Execute the rest of the body of this constructor. If that execution completes
abruptly, then this procedure completes abruptly for the same reason.
Otherwise, this procedure completes normally.

Unlike C++, the Java programming language does not specify altered rules for
method dispatch during the creation of a new class instance. If methods are
invoked that are overridden in subclasses in the object being initialized, then these
overriding methods are used, even before the new object is completely initialized.

Example 12.5-1. Evaluation of Instance Creation

class Point {
int x, y;
Point() { x = 1; y = 1; }

}

class ColoredPoint extends Point {
int color = 0xXFFOOFF;
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}
class Test {
public static void main(String[] args) {
ColoredPoint cp = new ColoredPoint();
System.out.println(cp.color);

Here, a new instance of ColoredPoint is created. First, space is allocated for the new
ColoredPoint, to hold the fields x, y, and color. All these fields are then initialized to
their default values (in this case, 0 for each field). Next, the ColoredPoint constructor
with no arguments is first invoked. Since ColoredPoint declares no constructors, a default
constructor of the following form is implicitly declared:

ColoredPoint() { super(); }

This constructor then invokes the Point constructor with no arguments. The Point
constructor does not begin with an invocation of a constructor, so the Java compiler
provides an implicit invocation of its superclass constructor of no arguments, as though it
had been written:

Point() { super(); x =1; yv =1; }
Therefore, the constructor for Object which takes no arguments is invoked.

The class Object has no superclass, so the recursion terminates here. Next, any instance
initializers and instance variable initializers of Object are invoked. Next, the body of the
constructor of Object that takes no arguments is executed. No such constructor is declared
in Object, so the Java compiler supplies a default one, which in this special case is:

Object() { }
This constructor executes without effect and returns.

Next, all initializers for the instance variables of class Point are executed. As it happens,
the declarations of x and y do not provide any initialization expressions, so no action is
required for this step of the example. Then the body of the Point constructor is executed,
setting x to 1 and y to 1.

Next, the initializers for the instance variables of class ColoredPoint are executed.
This step assigns the value 0xFFOOFF to color. Finally, the rest of the body of the
ColoredPoint constructor is executed (the part after the invocation of super); there
happen to be no statements in the rest of the body, so no further action is required and
initialization is complete.

Example 12.5-2. Dynamic Dispatch During Instance Creation
class Super {

Super() { printThree(); }
void printThree() { System.out.println("three"); }
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class Test extends Super {
int three = (int)Math.PI; // That is, 3
void printThree() { System.out.println(three); }

public static void main(String[] args) {
Test t = new Test();
t.printThree();

}
This program produces the output:

0
3

This shows that the invocation of printThree in the constructor for class Super does
not invoke the definition of printThree in class Super, but rather invokes the overriding
definition of printThree in class Test. This method therefore runs before the field
initializers of Test have been executed, which is why the first value output is 0, the default
value to which the field three of Test is initialized. The later invocation of printThree
in method main invokes the same definition of printThree, but by that point the initializer
for instance variable three has been executed, and so the value 3 is printed.

12.6 Finalization of Class Instances

The class object has a protected method called finalize; this method can be
overridden by other classes. The particular definition of finalize that can be
invoked for an object is called the finalizer of that object. Before the storage for an
object is reclaimed by the garbage collector, the Java Virtual Machine will invoke
the finalizer of that object.

Finalizers provide a chance to free up resources that cannot be freed automatically
by an automatic storage manager. In such situations, simply reclaiming the memory
used by an object would not guarantee that the resources it held would be reclaimed.

The Java programming language does not specify how soon a finalizer will be
invoked, except to say that it will happen before the storage for the object is reused.

The Java programming language does not specify which thread will invoke the
finalizer for any given object.

Itis important to note that many finalizer threads may be active (this is sometimes needed on
large shared memory multiprocessors), and that if a large connected data structure becomes
garbage, all of the finalize methods for every object in that data structure could be
invoked at the same time, each finalizer invocation running in a different thread.
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The Java programming language imposes no ordering on finalize method calls.
Finalizers may be called in any order, or even concurrently.

As an example, if a circularly linked group of unfinalized objects becomes unreachable
(or finalizer-reachable), then all the objects may become finalizable together. Eventually,
the finalizers for these objects may be invoked, in any order, or even concurrently
using multiple threads. If the automatic storage manager later finds that the objects are
unreachable, then their storage can be reclaimed.

It is straightforward to implement a class that will cause a set of finalizer-like methods to be
invoked in a specified order for a set of objects when all the objects become unreachable.
Defining such a class is left as an exercise for the reader.

It is guaranteed that the thread that invokes the finalizer will not be holding any
user-visible synchronization locks when the finalizer is invoked.

If an uncaught exception is thrown during the finalization, the exception is ignored
and finalization of that object terminates.

The completion of an object's constructor happens-before (§17.4.5) the execution
of its finalize method (in the formal sense of happens-before).

The finalize method declared in class object takes no action. The fact that class
Object declares a finalize method means that the £inalize method for any class
can always invoke the finalize method for its superclass. This should always
be done, unless it is the programmer's intent to nullify the actions of the finalizer
in the superclass. (Unlike constructors, finalizers do not automatically invoke the
finalizer for the superclass; such an invocation must be coded explicitly.)

For efficiency, an implementation may keep track of classes that do not override the
finalize method of class Object, or override it in a trivial way.

For example:

protected void finalize() throws Throwable {
super.finalize();

}

We encourage implementations to treat such objects as having a finalizer that is not
overridden, and to finalize them more efficiently, as described in §12.6.1.

A finalizer may be invoked explicitly, just like any other method.

The package java.lang.ref describes weak references, which interact with
garbage collection and finalization. As with any API that has special interactions
with the Java programming language, implementors must be cognizant of any
requirements imposed by the java.lang.ref API. This specification does not



EXECUTION Finalization of Class Instances

discuss weak references in any way. Readers are referred to the API documentation
for details.

12.6.1 Implementing Finalization

Every object can be characterized by two attributes: it may be reachable, finalizer-
reachable, or unreachable, and it may also be unfinalized, finalizable, or finalized.

A reachable object is any object that can be accessed in any potential continuing
computation from any live thread.

A finalizer-reachable object can be reached from some finalizable object through
some chain of references, but not from any live thread.

An unreachable object cannot be reached by either means.
An unfinalized object has never had its finalizer automatically invoked.
A finalized object has had its finalizer automatically invoked.

A finalizable object has never had its finalizer automatically invoked, but the Java
Virtual Machine may eventually automatically invoke its finalizer.

An object o is not finalizable until its constructor has invoked the constructor
for object on o and that invocation has completed successfully (that is, without
throwing an exception). Every pre-finalization write to a field of an object must be
visible to the finalization of that object. Furthermore, none of the pre-finalization
reads of fields of that object may see writes that occur after finalization of that
object is initiated.

Optimizing transformations of a program can be designed that reduce the number of
objects that are reachable to be less than those which would naively be considered
reachable. For example, a Java compiler or code generator may choose to set a
variable or parameter that will no longer be used to null to cause the storage for
such an object to be potentially reclaimable sooner.

Another example of this occurs if the values in an object's fields are stored in
registers. The program may then access the registers instead of the object, and never
access the object again. This would imply that the object is garbage. Note that this
sort of optimization is only allowed if references are on the stack, not stored in
the heap.

For example, consider the Finalizer Guardian pattern:

class Foo {
private final Object finalizerGuardian = new Object() {
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protected void finalize() throws Throwable {
/* finalize outer Foo object */

}
}

The finalizer guardian forces super.finalize to be called if a subclass overrides
finalize and does not explicitly call super.finalize.

If these optimizations are allowed for references that are stored on the heap, then a Java
compiler can detect that the finalizerGuardian field is never read, null it out, collect
the object immediately, and call the finalizer early. This runs counter to the intent: the
programmer probably wanted to call the Foo finalizer when the Foo instance became
unreachable. This sort of transformation is therefore not legal: the inner class object should
be reachable for as long as the outer class object is reachable.

Transformations of this sort may result in invocations of the finalize method occurring
earlier than might be otherwise expected. In order to allow the user to prevent this, we
enforce the notion that synchronization may keep the object alive. If an object's finalizer
can result in synchronization on that object, then that object must be alive and considered
reachable whenever a lock is held on it.

Note that this does not prevent synchronization elimination: synchronization only keeps
an object alive if a finalizer might synchronize on it. Since the finalizer occurs in another
thread, in many cases the synchronization could not be removed anyway.

12.6.2 Interaction with the Memory Model

It must be possible for the memory model (§17.4) to decide when it can commit
actions that take place in a finalizer. This section describes the interaction of
finalization with the memory model.

Each execution has a number of reachability decision points, labeled di. Each
action either comes-before di or comes-after di. Other than as explicitly mentioned,
the comes-before ordering described in this section is unrelated to all other
orderings in the memory model.

If r is a read that sees a write w and r comes-before di, then w must come-before di.

If x and y are synchronization actions on the same variable or monitor such that
so(x,y) (§17.4.4) and y comes-before di, then x must come-before di.

At each reachability decision point, some set of objects are marked as unreachable,
and some subset of those objects are marked as finalizable. These reachability
decision points are also the points at which references are checked, enqueued, and
cleared according to the rules provided in the API documentation for the package
java.lang.ref.
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The only objects that are considered definitely reachable at a point di are those that
can be shown to be reachable by the application of these rules:

An object B is definitely reachable at di from static fields if there exists a write
wl to a static field vof a class ¢ such that the value written by w1/ is a reference
to B, the class c is loaded by a reachable classloader, and there does not exist a
write w2 to vsuch that hb(w2, wi) is not true and both w/ and w2 come-before di.

An object Bis definitely reachable from a at di if there is a write w/ to an element
v of a such that the value written by w/ is a reference to B and there does not
exist a write w2 to v such that hb(w2, wl) is not true and both w/ and w2 come-
before di.

If an object c is definitely reachable from an object B, and object B is definitely
reachable from an object 4, then c is definitely reachable from a.

If an object x is marked as unreachable at di, then:

x must not be definitely reachable at di from static fields; and

All active uses of x in thread t that come-after di must occur in the finalizer
invocation for x or as a result of thread t performing a read that comes-after di
of a reference to x; and

All reads that come-after di that see a reference to x must see writes to elements
of objects that were unreachable at di, or see writes that came-after di.

An action a is an active use of x if and only if at least one of the following is true:

a reads or writes an element of x

a locks or unlocks x and there is a lock action on x that happens-after the
invocation of the finalizer for x

a writes a reference to x

a is an active use of an object v, and x is definitely reachable from v

If an object x is marked as finalizable at di, then:

x must be marked as unreachable at di; and
di must be the only place where x is marked as finalizable; and

actions that happen-after the finalizer invocation must come-after di.
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12.7 Unloading of Classes and Interfaces

An implementation of the Java programming language may unload classes.

A class or interface may be unloaded if and only if its defining class loader may be
reclaimed by the garbage collector as discussed in §12.6.

Classes and interfaces loaded by the bootstrap loader may not be unloaded.

Class unloading is an optimization that helps reduce memory use. Obviously, the semantics
of a program should not depend on whether and how a system chooses to implement an
optimization such as class unloading. To do otherwise would compromise the portability
of programs. Consequently, whether a class or interface has been unloaded or not should
be transparent to a program.

However, if a class or interface ¢ was unloaded while its defining loader was potentially
reachable, then ¢ might be reloaded. One could never ensure that this would not happen.
Even if the class was not referenced by any other currently loaded class, it might be
referenced by some class or interface, D, that had not yet been loaded. When D is loaded by
C's defining loader, its execution might cause reloading of c.

Reloading may not be transparent if, for example, the class has static variables (whose
state would be lost), static initializers (which may have side effects), or native methods
(which may retain static state). Furthermore, the hash value of the class object is
dependent on its identity. Therefore it is, in general, impossible to reload a class or interface
in a completely transparent manner.

Since we can never guarantee that unloading a class or interface whose loader is potentially
reachable will not cause reloading, and reloading is never transparent, but unloading must
be transparent, it follows that one must not unload a class or interface while its loader is
potentially reachable. A similar line of reasoning can be used to deduce that classes and
interfaces loaded by the bootstrap loader can never be unloaded.

One must also argue why it is safe to unload a class c if its defining class loader can
be reclaimed. If the defining loader can be reclaimed, then there can never be any live
references to it (this includes references that are not live, but might be resurrected by
finalizers). This, in turn, can only be true if there are can never be any live references to any
of the classes defined by that loader, including ¢, either from their instances or from code.

Class unloading is an optimization that is only significant for applications that load large
numbers of classes and that stop using most of those classes after some time. A prime
example of such an application is a web browser, but there are others. A characteristic of
such applications is that they manage classes through explicit use of class loaders. As a
result, the policy outlined above works well for them.

Strictly speaking, it is not essential that the issue of class unloading be discussed by this
specification, as class unloading is merely an optimization. However, the issue is very
subtle, and so it is mentioned here by way of clarification.
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12.8 Program Exit

A program terminates all its activity and exizs when one of two things happens:
* All the threads that are not daemon threads terminate.

¢ Some thread invokes the exit method of class Runtime or class System, and the
exit operation is not forbidden by the security manager.
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CHAPTER 13

Binary Compatibility

DEVELOPMENT tools for the Java programming language should support
automatic recompilation as necessary whenever source code is available. Particular
implementations may also store the source and binary of types in a versioning
database and implement a classLoader that uses integrity mechanisms of the
database to prevent linkage errors by providing binary-compatible versions of types
to clients.

Developers of packages and classes that are to be widely distributed face a
different set of problems. In the Internet, which is our favorite example of a widely
distributed system, it is often impractical or impossible to automatically recompile
the pre-existing binaries that directly or indirectly depend on a type that is to be
changed. Instead, this specification defines a set of changes that developers are
permitted to make to a package or to a class or interface type while preserving (not
breaking) compatibility with pre-existing binaries.

Within the framework of Release-to-Release Binary Compatibility in SOM
(Forman, Conner, Danforth, and Raper, Proceedings of OOPSLA '95), Java
programming language binaries are binary compatible under all relevant
transformations that the authors identify (with some caveats with respect to the
addition of instance variables). Using their scheme, here is a list of some important
binary compatible changes that the Java programming language supports:

* Reimplementing existing methods, constructors, and initializers to improve
performance.

* Changing methods or constructors to return values on inputs for which they
previously either threw exceptions that normally should not occur or failed by
going into an infinite loop or causing a deadlock.

* Adding new fields, methods, or constructors to an existing class or interface.

* Deleting private fields, methods, or constructors of a class.
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When an entire package is updated, deleting package access fields, methods, or
constructors of classes and interfaces in the package.

* Reordering the fields, methods, or constructors in an existing type declaration.
* Moving a method upward in the class hierarchy.

» Reordering the list of direct superinterfaces of a class or interface.

* Inserting new class or interface types in the type hierarchy.

This chapter specifies minimum standards for binary compatibility guaranteed by
all implementations. The Java programming language guarantees compatibility
when binaries of classes and interfaces are mixed that are not known to be from
compatible sources, but whose sources have been modified in the compatible ways
described here. Note that we are discussing compatibility between releases of an
application. A discussion of compatibility among releases of the Java SE platform
is beyond the scope of this chapter.

We encourage development systems to provide facilities that alert developers to
the impact of changes on pre-existing binaries that cannot be recompiled.

This chapter first specifies some properties that any binary format for the Java
programming language must have (§13.1). It next defines binary compatibility,
explaining what it is and what it is not (§13.2). It finally enumerates a large set
of possible changes to packages (§13.3), classes (§13.4), and interfaces (§13.5),
specifying which of these changes are guaranteed to preserve binary compatibility
and which are not.

Occasionally, references of the form: (JVMS §x.y) are used to indicate concepts
from The Java Virtual Machine Specification, Java SE 8 Edition.

13.1 The Form of a Binary

Programs must be compiled either into the class file format specified by The Java
Virtual Machine Specification, Java SE 8 Edition, or into a representation that can
be mapped into that format by a class loader written in the Java programming
language.

The resulting class file must have certain properties. A number of these properties
are specifically chosen to support source code transformations that preserve binary
compatibility. The required properties are:
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1. The class or interface must be named by its binary name, which must meet the
following constraints:

* The binary name of a top level type (§7.6) is its canonical name (§6.7).

* The binary name of a member type (§8.5, §9.5) consists of the binary name
of its immediately enclosing type, followed by s, followed by the simple
name of the member.

* The binary name of a local class (§14.3) consists of the binary name of
its immediately enclosing type, followed by $, followed by a non-empty
sequence of digits, followed by the simple name of the local class.

* The binary name of an anonymous class (§15.9.5) consists of the binary
name of its immediately enclosing type, followed by $, followed by a non-
empty sequence of digits.

* The binary name of a type variable declared by a generic class or interface
(§8.1.2, §9.1.2) is the binary name of its immediately enclosing type,
followed by $, followed by the simple name of the type variable.

* The binary name of a type variable declared by a generic method (§8.4.4) is
the binary name of the type declaring the method, followed by $, followed
by the descriptor of the method (JVMS §4.3.3), followed by $, followed by
the simple name of the type variable.

* The binary name of a type variable declared by a generic constructor (§8.8.4)
is the binary name of the type declaring the constructor, followed by s,
followed by the descriptor of the constructor JVMS §4.3.3), followed by s,
followed by the simple name of the type variable.

2. A reference to another class or interface type must be symbolic, using the
binary name of the type.

3. A reference to a field that is a constant variable (§4.12.4) must be resolved at
compile time to the value v denoted by the constant variable's initializer.

If such a field is static, then no reference to the field should be present in the
code in a binary file, including the class or interface which declared the field.
Such a field must always appear to have been initialized (§12.4.2); the default
initial value for the field (if different than v) must never be observed.

If such a field is non-static, then no reference to the field should be present
in the code in a binary file, except in the class containing the field. (It will
be a class rather than an interface, since an interface has only static fields.)
The class should have code to set the field's value to v during instance creation
(§12.5).
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Given a legal expression denoting a field access in a class c, referencing a
field named £ that is not a constant variable and is declared in a (possibly
distinct) class or interface b, we define the qualifying type of the field reference
as follows:

* If the expression is referenced by a simple name, then if £ is a member of the
current class or interface, ¢, then let Tbe c. Otherwise, let T be the innermost
lexically enclosing type declaration of which £ is a member. In either case,
T is the qualifying type of the reference.

e If the reference is of the form TypeName. £, where TypeName denotes a
class or interface, then the class or interface denoted by TypeName is the
qualifying type of the reference.

* If the expression is of the form ExpressionName. £ or Primary. £, then:

— If the compile-time type of ExpressionName or Primary is an intersection
type Vi & ... & V, (§4.9), then the qualifying type of the reference is v;.

— Otherwise, the compile-time type of ExpressionName or Primary is the
qualifying type of the reference.

» If the expression is of the form super. £, then the superclass of c is the
qualifying type of the reference.

* If the expression is of the form TypeName.super. £, then the superclass of
the class denoted by TypeName is the qualifying type of the reference.

The reference to £ must be compiled into a symbolic reference to the erasure
(§4.6) of the qualifying type of the reference, plus the simple name of the
field, £. The reference must also include a symbolic reference to the erasure
of the declared type of the field so that the verifier can check that the type is
as expected.

Given a method invocation expression or a method reference expression in
a class or interface c, referencing a method named m declared (or implicitly
declared (§9.2)) in a (possibly distinct) class or interface b, we define the
qualifying type of the method invocation as follows:

* If pis object then the qualifying type of the expression is Object.
* Otherwise:

— If the method is referenced by a simple name, then if mis a member of the
current class or interface c, let T be c¢; otherwise, let T be the innermost
lexically enclosing type declaration of which mis a member. In either case,
T is the qualifying type of the method invocation.
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— If the expression is of the form TypeName .m or ReferenceType: :m, then
the type denoted by TypeName or ReferenceType is the qualifying type of
the method invocation.

— If the expression is of the form ExpressionName.m or Primary.m or
ExpressionName: :mor Primary: :m, then:

> If the compile-time type of ExpressionName or Primary is an
intersection type v; & ... & v, (§4.9), then the qualifying type of the
method invocation is v;.

> Otherwise, the compile-time type of ExpressionName or Primary is the
qualifying type of the method invocation.

— If the expression is of the form super.mor super: : m, then the superclass
of cis the qualifying type of the method invocation.

— If the expression is of the form TypeName.super.m or
TypeName . super: :m, then if TypeName denotes a class x, the superclass
of x is the qualifying type of the method invocation; if TypeName denotes
an interface x, x is the qualifying type of the method invocation.

A reference to a method must be resolved at compile time to a symbolic
reference to the erasure (§4.6) of the qualifying type of the invocation, plus the
erasure of the signature (§8.4.2) of the method. The signature of a method must
include all of the following as determined by §15.12.3:

* The simple name of the method
* The number of parameters to the method
* A symbolic reference to the type of each parameter

A reference to a method must also include either a symbolic reference to the
erasure of the return type of the denoted method or an indication that the
denoted method is declared void and does not return a value.

6. Given a class instance creation expression (§15.9) or an explicit constructor
invocation statement (§8.8.7.1) or a method reference expression of the form
ClassType :: new (§15.13) in a class or interface c referencing a constructor m
declared in a (possibly distinct) class or interface b, we define the qualifying
type of the constructor invocation as follows:

¢ If the expression is of the form new D(. . .) or ExpressionName .new D(. . .)
or Primary.new D(...) Or D :: new, then the qualifying type of the
invocation is D.
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e If the expression is of the form new D(...){...} or ExpressionName .new
D(...){...}or Primary.newD(...){...},then the qualifying type of the
expression is the compile-time type of the expression.

o If the expression 18 of the form super(...) or
ExpressionName . super (. ..) or Primary.super(...),then the qualifying
type of the expression is the direct superclass of c.

* If the expression is of the form this(...), then the qualifying type of the
expression is C.

A reference to a constructor must be resolved at compile time to a symbolic
reference to the erasure (§4.6) of the qualifying type of the invocation, plus
the signature of the constructor (§8.8.2). The signature of a constructor must
include both:

* The number of parameters of the constructor

* A symbolic reference to the type of each formal parameter

A binary representation for a class or interface must also contain all of the

following:

1. If it is a class and is not object, then a symbolic reference to the erasure of
the direct superclass of this class.

2. A symbolic reference to the erasure of each direct superinterface, if any.

3. A specification of each field declared in the class or interface, given as the
simple name of the field and a symbolic reference to the erasure of the type
of the field.

4. Ifitisaclass,then the erased signature of each constructor, as described above.

5. For each method declared in the class or interface (excluding, for an interface,
its implicitly declared methods (§9.2)), its erased signature and return type, as
described above.

6. The code needed to implement the class or interface:

* For an interface, code for the field initializers and the implementation of each
default method.

¢ For a class, code for the field initializers, the instance and static initializers,
and the implementation of each method or constructor.

7. Every type must contain sufficient information to recover its canonical name

(§6.7).
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10.

11.

12.

Every member type must have sufficient information to recover its source level
access modifier.

Every nested class and nested interface must have a symbolic reference to its
immediately enclosing class (§8.1.3).

Every class must contain symbolic references to all of its member types (§8.5),
and to all local and anonymous classes that appear in its methods, constructors,
static initializers, instance initializers, and field initializers.

Every interface must contain symbolic references to all of its member types
(8§9.5), and to all local and anonymous classes that appear in its default methods
and field initializers.

A construct emitted by a Java compiler must be marked as synthetic if it does
not correspond to a construct declared explicitly or implicitly in source code,
unless the emitted construct is a class initialization method (JVMS §2.9).

A construct emitted by a Java compiler must be marked as mandated if it
corresponds to a formal parameter declared implicitly in source code (§8.8.1,
§8.8.9,§8.9.3,§1595.1).

The following formal parameters are declared implicitly in source code:
* The first formal parameter of a constructor of a non-private inner member class
(88.8.1,§8.8.9).

* The first formal parameter of an anonymous constructor of an anonymous class whose
superclass is inner or local (not in a static context) (§15.9.5.1).

e The formal parameter name of the value0Of method which is implicitly declared in an
enum type (§8.9.3).

For reference, the following constructs are declared implicitly in source code, but are not
marked as mandated because only formal parameters can be so marked in a class file
(JVMS §4.7.22):

* Default constructors of classes and enum types (§8.8.9, §8.9.2)

* Anonymous constructors (§15.9.5.1)

* The values and valueOf methods of enum types (§8.9.3)

* Certain public fields of enum types (§8.9.3)

* Certain public methods of interfaces (§9.2)

¢ Container annotations (§9.7.5)

The following sections discuss changes that may be made to class and interface type
declarations without breaking compatibility with pre-existing binaries. Under the

13.1
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translation requirements given above, the Java Virtual Machine and its class file
format support these changes. Any other valid binary format, such as a compressed
or encrypted representation that is mapped back into class files by a class loader
under the above requirements, will necessarily support these changes as well.

13.2 What Binary Compatibility Is and Is Not

A change to a type is binary compatible with (equivalently, does not break binary
compatibility with) pre-existing binaries if pre-existing binaries that previously
linked without error will continue to link without error.

Binaries are compiled to rely on the accessible members and constructors of other
classes and interfaces. To preserve binary compatibility, a class or interface should
treat its accessible members and constructors, their existence and behavior, as a
contract with its users.

The Java programming language is designed to prevent additions to contracts
and accidental name collisions from breaking binary compatibility. Specifically,
addition of more methods overloading a particular method name does not break
compatibility with pre-existing binaries. The method signature that the pre-existing
binary will use for method lookup is chosen by the overload resolution algorithm
at compile time (§15.12.2).

If the Java programming language had been designed so that the particular method to be
executed was chosen at run time, then such an ambiguity might be detected at run time. Such
a rule would imply that adding an additional overloaded method so as to make ambiguity
possible at a call site could break compatibility with an unknown number of pre-existing
binaries. See §13.4.23 for more discussion.

Binary compatibility is not the same as source compatibility. In particular, the
example in §13.4.6 shows that a set of compatible binaries can be produced from
sources that will not compile all together. This example is typical: a new declaration
is added, changing the meaning of a name in an unchanged part of the source code,
while the pre-existing binary for that unchanged part of the source code retains the
fully-qualified, previous meaning of the name. Producing a consistent set of source
code requires providing a qualified name or field access expression corresponding
to the previous meaning.
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13.3 Evolution of Packages

A new top level class or interface type may be added to a package without breaking
compatibility with pre-existing binaries, provided the new type does not reuse a
name previously given to an unrelated type.

If a new type reuses a name previously given to an unrelated type, then a conflict
may result, since binaries for both types could not be loaded by the same class
loader.

Changes in top level class and interface types that are not public and that are not a
superclass or superinterface, respectively, of a public type, affect only types within
the package in which they are declared. Such types may be deleted or otherwise
changed, even if incompatibilities are otherwise described here, provided that the
affected binaries of that package are updated together.

13.4 Evolution of Classes

This section describes the effects of changes to the declaration of a class and its
members and constructors on pre-existing binaries.

13.4.1 abstract Classes

If a class that was not declared abstract is changed to be declared abstract,
then pre-existing binaries that attempt to create new instances of that class will
throw either an InstantiationError at link time, or (if a reflective method is
used) an InstantiationException at run time; such a change is therefore not
recommended for widely distributed classes.

Changing a class that is declared abstract to no longer be declared abstract does
not break compatibility with pre-existing binaries.

13.4.2 final Classes

If a class that was not declared final is changed to be declared final, then a
VerifyError is thrown if a binary of a pre-existing subclass of this class is loaded,
because £inal classes can have no subclasses; such a change is not recommended
for widely distributed classes.

Changing a class that is declared £inal to no longer be declared £inal does not
break compatibility with pre-existing binaries.

13.3
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134.3 public Classes

Changing a class that is not declared public to be declared public does not break
compatibility with pre-existing binaries.

If a class that was declared public is changed to not be declared public, then an
IllegalAccessError is thrown if a pre-existing binary is linked that needs but no
longer has access to the class type; such a change is not recommended for widely
distributed classes.

13.4.4 Superclasses and Superinterfaces

A classCircularityError is thrown at load time if a class would be a superclass
of itself. Changes to the class hierarchy that could result in such a circularity
when newly compiled binaries are loaded with pre-existing binaries are not
recommended for widely distributed classes.

Changing the direct superclass or the set of direct superinterfaces of a class type
will not break compatibility with pre-existing binaries, provided that the total set of
superclasses or superinterfaces, respectively, of the class type loses no members.

If a change to the direct superclass or the set of direct superinterfaces results in any
class or interface no longer being a superclass or superinterface, respectively, then
linkage errors may result if pre-existing binaries are loaded with the binary of the
modified class. Such changes are not recommended for widely distributed classes.

Example 13.4.4-1. Changing A Superclass

Suppose that the following test program:

class Hyper { char h = 'h'; }
class Super extends Hyper { char s = 's'; }
class Test extends Super {
public static void printH(Hyper h) {
System.out.println(h.h);
}
public static void main(String[] args) {
printH(new Super());
}
}

is compiled and executed, producing the output:

h

Suppose that a new version of class Super is then compiled:
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class Super { char s = 's'; }

This version of class Super is not a subclass of Hyper. If we then run the existing binaries
of Hyper and Test with the new version of Super, then a VerifyError is thrown at
link time. The verifier objects because the result of new Super () cannot be passed as an
argument in place of a formal parameter of type Hyper, because Super is not a subclass
of Hyper.

It is instructive to consider what might happen without the verification step: the program
might run and print:

This demonstrates that without the verifier, the Java type system could be defeated by
linking inconsistent binary files, even though each was produced by a correct Java compiler.

The lesson is that an implementation that lacks a verifier or fails to use it will not maintain
type safety and is, therefore, not a valid implementation.

The requirement that alternatives in a multi-catch clause (§14.20) not be subclasses or
superclasses of each other is only a source restriction. Assuming the following client code
is legal:

try {
throwAorB();
} catch(ExceptionA | ExceptionB e) {

}

where ExceptionA and ExceptionB do not have a subclass/superclass relationship when
the client is compiled, it is binary compatible with respect to the client for Exceptiona
and ExceptionB to have such a relationship when the client is executed.

This is analogous to other situations where a class transformation that is binary compatible
for a client might not be source compatible for the same client.

13.4.5 Class Type Parameters

Adding or removing a type parameter of a class does not, in itself, have any
implications for binary compatibility.

If such a type parameter is used in the type of a field or method, that may have the
normal implications of changing the aforementioned type.

Renaming a type parameter of a class has no effect with respect to pre-existing
binaries.

Changing the first bound of a type parameter of a class may change the erasure
(§4.6) of any member that uses that type parameter in its own type, and this may

134

391



134

392

Evolution of Classes BINARY COMPATIBILITY

affect binary compatibility. The change of such a bound is analogous to the change
of the first bound of a type parameter of a method or constructor (§13.4.13).

Changing any other bound has no effect on binary compatibility.

13.4.6 Class Body and Member Declarations

No incompatibility with pre-existing binaries is caused by adding an instance
(respectively static) member that has the same name and accessibility (for fields),
or same name and accessibility and signature and return type (for methods), as an
instance (respectively static) member of a superclass or subclass. No error occurs
even if the set of classes being linked would encounter a compile-time error.

Deleting a class member or constructor that is not declared private may cause a
linkage error if the member or constructor is used by a pre-existing binary.

Example 13.4.6-1. Changing A Class Body

class Hyper {
void hello() { System.out.println("hello from Hyper"); }
}

class Super extends Hyper {
void hello() { System.out.println("hello from Super"); }
}

class Test {
public static void main(String[] args) {
new Super().hello();
}
}

This program produces the output:
hello from Super

Suppose that a new version of class Super is produced:
class Super extends Hyper {}

Then, recompiling Super and executing this new binary with the original binaries for Test
and Hyper produces the output:

hello from Hyper

as expected.

The super keyword can be used to access a method declared in a
superclass, bypassing any methods declared in the current class. The expression
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super . Identifier is resolved, at compile time, to a method m in the superclass s. If
the method mis an instance method, then the method which is invoked at run time
is the method with the same signature as m that is a member of the direct superclass
of the class containing the expression involving super.

Example 13.4.6-2. Changing A Superclass

class Hyper {
void hello() { System.out.println("hello from Hyper"); }
}

class Super extends Hyper { }
class Test extends Super {
public static void main(String[] args) {
new Test().hello();

}
void hello() {
super.hello();
}
}

This program produces the output:
hello from Hyper
Suppose that a new version of class Super is produced:

class Super extends Hyper {
void hello() { System.out.println("hello from Super"); }
}

Then, if Super and Hyper are recompiled but not Test, then running the new binaries with
the existing binary of Test produces the output:

hello from Super

as you might expect.

13.4.7 Access to Members and Constructors

Changing the declared access of a member or constructor to permit less access
may break compatibility with pre-existing binaries, causing a linkage error to be
thrown when these binaries are resolved. Less access is permitted if the access
modifier is changed from package access to private access; from protected
access to package or private access; or from public access to protected,
package, or private access. Changing a member or constructor to permit less
access is therefore not recommended for widely distributed classes.
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Perhaps surprisingly, the binary format is defined so that changing a member or
constructor to be more accessible does not cause a linkage error when a subclass
(already) defines a method to have less access.

Example 13.4.7-1. Changing Accessibility

If the package points defines the class Point:

package points;
public class Point {
public int x, y;
protected void print() {
System.out.println("(" + x + "," + vy + ")");
}
}

used by the program:

class Test extends points.Point {
public static void main(String[] args) {
Test t = new Test();
t.print();
}
protected void print() {
System.out.println("Test");
}
}

then these classes compile and Test executes to produce the output:
Test

If the method print in class Point is changed to be public, and then only the Point
class is recompiled, and then executed with the previously existing binary for Test, then
no linkage error occurs. This happens even though it is improper, at compile time, for a
public method to be overridden by a protected method (as shown by the fact that the
class Test could not be recompiled using this new Point class unless print in Test were
changed to be public.)

Allowing superclasses to change protected methods to be public without
breaking binaries of pre-existing subclasses helps make binaries less fragile.
The alternative, where such a change would cause a linkage error, would create
additional binary incompatibilities.

13.4.8 Field Declarations

Widely distributed programs should not expose any fields to their clients. Apart
from the binary compatibility issues discussed below, this is generally good
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software engineering practice. Adding a field to a class may break compatibility
with pre-existing binaries that are not recompiled.

Assume a reference to a field £ with qualifying type 7. Assume further that £ is
in fact an instance (respectively static) field declared in a superclass of T, s, and
that the type of £is x.

If a new field of type x with the same name as £ is added to a subclass of s thatis a
superclass of T or Titself, then a linkage error may occur. Such a linkage error will
occur only if, in addition to the above, either one of the following is true:

* The new field is less accessible than the old one.
* The new field is a static (respectively instance) field.

In particular, no linkage error will occur in the case where a class could no longer
be recompiled because a field access previously referenced a field of a superclass
with an incompatible type. The previously compiled class with such a reference
will continue to reference the field declared in a superclass.

Example 13.4.8-1. Adding A Field Declaration

class Hyper { String h = "hyper"; }
class Super extends Hyper { String s = "super"; }
class Test {
public static void main(String[] args) {
System.out.println(new Super().h);
}
}

This program produces the output:
hyper
Suppose a new version of class Super is produced:
class Super extends Hyper {
String s = "super";
int h = 0;

}

Then, recompiling Hyper and Super, and executing the resulting new binaries with the old
binary of Test produces the output:

hyper

The field h of Hyper is output by the original binary of Test. While this may seem
surprising at first, it serves to reduce the number of incompatibilities that occur at run time.
(In an ideal world, all source files that needed recompilation would be recompiled whenever
any one of them changed, eliminating such surprises. But such a mass recompilation is
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often impractical or impossible, especially in the Internet. And, as was previously noted,
such recompilation would sometimes require further changes to the source code.)

As another example, if the program:

class Hyper { String h = "Hyper"; }
class Super extends Hyper { }
class Test extends Super {
public static void main(String[] args) {
String s = new Test().h;
System.out.println(s);

is compiled and executed, it produces the output:
Hyper

Suppose that a new version of class Super is then compiled:
class Super extends Hyper { char h = 'h'; }

If the resulting binary is used with the existing binaries for Hyper and Test, then the output
is still:

Hyper
even though compiling the source for these binaries:

class Hyper { String h = "Hyper"; }
class Super extends Hyper { char h = 'h'; }
class Test extends Super {
public static void main(String[] args) {
String s = new Test().h;
System.out.println(s);

would result in a compile-time error, because the h in the source code for main would now
be construed as referring to the char field declared in Super, and a char value can't be
assigned to a String.

Deleting a field from a class will break compatibility with any pre-existing binaries
that reference this field, and a NoSuchFieldError will be thrown when such a
reference from a pre-existing binary is linked. Only private fields may be safely
deleted from a widely distributed class.

For purposes of binary compatibility, adding or removing a field £ whose type
involves type variables (§4.4) or parameterized types (§4.5) is equivalent to the
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addition (respectively, removal) of a field of the same name whose type is the
erasure (§4.6) of the type of f£.

13.49 final Fields and static Constant Variables

If a field that was not declared £inal is changed to be declared £inal, then it can
break compatibility with pre-existing binaries that attempt to assign new values to
the field.

Example 13.4.9-1. Changing A Variable To Be final

class Super { char s; }
class Test extends Super {
public static void main(String[] args) {
Super X = new Super();
Xx.s = 'a';
System.out.println(x.s);

}

This program produces the output:

Suppose that a new version of class Super is produced:
class Super { final char s = 'b'; }

If super is recompiled but not Test, then running the new binary with the existing binary
of Test results in a I1legalAccessError.

Deleting the keyword final or changing the value to which a field is initialized
does not break compatibility with existing binaries.

If a field is a constant variable (§4.12.4), and moreover is static, then deleting
the keyword final or changing its value will not break compatibility with pre-
existing binaries by causing them not to run, but they will not see any new value
for a usage of the field unless they are recompiled. This result is a side-effect of the
decision to support conditional compilation (§14.21). (One might suppose that the
new value is not seen if the usage occurs in a constant expression (§15.28) but is
seen otherwise. This is not so; pre-existing binaries do not see the new value at all.)

Another reason for requiring inlining of values of static constant variables is because of
switch statements. They are the only kind of statement that relies on constant expressions,
namely that each case label of a switch statement must be a constant expression whose
value is different than every other case label. case labels are often references to static
constant variables so it may not be immediately obvious that all the labels have different
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values. If it is proven that there are no duplicate labels at compile time, then inlining the
values into the class file ensures there are no duplicate labels at run time either - a very
desirable property.

Example 13.4.9-2. Conditional Compilation
If the example:

class Flags { static final boolean debug = true; }
class Test {
public static void main(String[] args) {
if (Flags.debug)
System.out.println("debug is true");

is compiled and executed, it produces the output:
debug is true
Suppose that a new version of class Flags is produced:
class Flags { static final boolean debug = false; }

If Flags is recompiled but not Test, then running the new binary with the existing binary
of Test produces the output:

debug is true

because the value of debug was a constant expression, and could have been used in
compiling Test without making a reference to the class Flags.

This behavior would not change if Flags were changed to be an interface, as in the modified
example:

interface Flags { boolean debug = true; }
class Test {
public static void main(String[] args) {
if (Flags.debug)
System.out.println("debug is true");

Conditional compilation is discussed further at the end of §14.21.

The best way to avoid problems with "inconstant constants" in widely-distributed
code is to use static constant variables only for values which truly are unlikely
ever to change. Other than for true mathematical constants, we recommend that
source code make very sparing use of static constant variables.
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If the read-only nature of £inal is required, a better choice is to declare a private static
variable and a suitable accessor method to get its value. Thus we recommend:

private static int N;
public static int getN() { return N; }

rather than:

public static final int N = ...;
There is no problem with:

public static int N = ...;

if N need not be read-only.

We recommend, as a general rule, that only constant expressions be assigned to
fields of interfaces.

We note, but do not recommend, that if a field of primitive type of an interface may
change, its value may be expressed idiomatically as in:

interface Flags {
boolean debug = new Boolean(true).booleanValue();

}

ensuring that this value is not a constant. Similar idioms exist for the other primitive
types.

One other thing to note is that static constant variables must never appear to have
the default initial value for their type (§4.12.5). This means that all such fields
appear to be initialized first during class initialization (§8.3.2,§9.3.1, §12.4.2).

134.10 static Fields

If a field that is not declared private was not declared static and is changed
to be declared static, or vice versa, then a linkage error, specifically an
IncompatibleClassChangeError, will result if the field is used by a pre-existing
binary which expected a field of the other kind. Such changes are not recommended
in code that has been widely distributed.

13.4.11 +transient Fields

Adding or deleting a transient modifier of a field does not break compatibility
with pre-existing binaries.
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13.4.12 Method and Constructor Declarations

Adding a method or constructor declaration to a class will not break compatibility
with any pre-existing binaries, even in the case where a type could no longer be
recompiled because an invocation previously referenced a method or constructor
of a superclass with an incompatible type. The previously compiled class with
such a reference will continue to reference the method or constructor declared in
a superclass.

Assume a reference to a method m with qualifying type 7. Assume further that mis
in fact an instance (respectively static) method declared in a superclass of T, s.

If a new method of type x with the same signature and return type as mis added to
a subclass of s that is a superclass of T or T itself, then a linkage error may occur.
Such a linkage error will occur only if, in addition to the above, either one of the
following is true:

¢ The new method is less accessible than the old one.
* The new method is a static (respectively instance) method.

Deleting a method or constructor from a class may break compatibility
with any pre-existing binary that referenced this method or constructor; a
NoSuchMethodError may be thrown when such a reference from a pre-existing
binary is linked. Such an error will occur only if no method with a matching
signature and return type is declared in a superclass.

If the source code for a non-inner class contains no declared constructors, then
a default constructor with no parameters is implicitly declared (§8.8.9). Adding
one or more constructor declarations to the source code of such a class will
prevent this default constructor from being implicitly declared, effectively deleting
a constructor, unless one of the new constructors also has no parameters, thus
replacing the default constructor. The default constructor with no parameters is
given the same access modifier as the class of its declaration, so any replacement
should have as much or more access if compatibility with pre-existing binaries is
to be preserved.

13.4.13 Method and Constructor Type Parameters

Adding or removing a type parameter of a method or constructor does not, in itself,
have any implications for binary compatibility.

If such a type parameter is used in the type of the method or constructor, that may
have the normal implications of changing the aforementioned type.
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Renaming a type parameter of a method or constructor has no effect with respect
to pre-existing binaries.

Changing the first bound of a type parameter of a method or constructor may change
the erasure (§4.6) of any member that uses that type parameter in its own type, and
this may affect binary compatibility. Specifically:

* If the type parameter is used as the type of a field, the effect is as if the field was
removed and a field with the same name, whose type is the new erasure of the
type variable, was added.

* If the type parameter is used as the type of any formal parameter of a method, but
not as the return type, the effect is as if that method were removed, and replaced
with a new method that is identical except for the types of the aforementioned
formal parameters, which now have the new erasure of the type parameter as
their type.

o If the type parameter is used as a return type of a method, but not as the type of
any formal parameter of the method, the effect is as if that method were removed,
and replaced with a new method that is identical except for the return type, which
is now the new erasure of the type parameter.

* If the type parameter is used as a return type of a method and as the type of one
or more formal parameters of the method, the effect is as if that method were
removed, and replaced with a new method that is identical except for the return
type, which is now the new erasure of the type parameter, and except for the
types of the aforementioned formal parameters, which now have the new erasure
of the type parameter as their types.

Changing any other bound has no effect on binary compatibility.

13.4.14 Method and Constructor Formal Parameters

Changing the name of a formal parameter of a method or constructor does not
impact pre-existing binaries.

Changing the name of a method, or the type of a formal parameter to a method
or constructor, or adding a parameter to or deleting a parameter from a method or
constructor declaration creates a method or constructor with a new signature, and
has the combined effect of deleting the method or constructor with the old signature
and adding a method or constructor with the new signature (§13.4.12).

Changing the type of the last formal parameter of a method from 7[ j to a variable
arity parameter (§8.4.1) of type 7 (i.e. to T...), and vice versa, does not impact
pre-existing binaries.
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For purposes of binary compatibility, adding or removing a method or constructor
m whose signature involves type variables (§4.4) or parameterized types (§4.5)
is equivalent to the addition (respectively, removal) of an otherwise equivalent
method whose signature is the erasure (§4.6) of the signature of m.

13.4.15 Method Result Type

Changing the result type of a method, or replacing a result type with void, or
replacing void with a result type, has the combined effect of deleting the old
method and adding a new method with the new result type or newly void result
(see §13.4.12).

For purposes of binary compatibility, adding or removing a method or constructor
m whose return type involves type variables (§4.4) or parameterized types (§4.5)
is equivalent to the addition (respectively, removal) of the an otherwise equivalent
method whose return type is the erasure (§4.6) of the return type of m.

13.4.16 abstract Methods

Changing a method that is declared abstract to no longer be declared abstract
does not break compatibility with pre-existing binaries.

Changing a method that is not declared abstract to be declared abstract will
break compatibility with pre-existing binaries that previously invoked the method,
causing an AbstractMethodError.

Example 13.4.16-1. Changing A Method To Be abstract

class Super { void out() { System.out.println("Out"); } }
class Test extends Super {
public static void main(String[] args) {

Test t = new Test();
System.out.println("way ");
t.out();

}
This program produces the output:

Way
Out

Suppose that a new version of class Super is produced:

abstract class Super {
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abstract void out();

}

If super is recompiled but not Test, then running the new binary with the existing binary
of Test results in an AbstractMethodError, because class Test has no implementation
of the method out, and is therefore is (or should be) abstract.

13.4.17 final Methods

Changing a method that is declared final to no longer be declared £inal does not
break compatibility with pre-existing binaries.

Changing an instance method that is not declared final to be declared £inal may
break compatibility with existing binaries that depend on the ability to override the
method.

Example 13.4.17-1. Changing A Method To Be final

class Super { void out() { System.out.println("out"); } }
class Test extends Super {
public static void main(String[] args) {
Test t = new Test();
t.out();
}

void out() { super.out(); }
}
This program produces the output:
out
Suppose that a new version of class Super is produced:
class Super { final void out() { System.out.println("!"); } }
If super is recompiled but not Test, then running the new binary with the existing binary

of Test results in a VerifyError because the class Test improperly tries to override the
instance method out.

Changing a class (static) method that is not declared £inal to be declared £inal
does not break compatibility with existing binaries, because the method could not
have been overridden.

13.4.18 native Methods

Adding or deleting a native modifier of a method does not break compatibility
with pre-existing binaries.

134

403



134

404

Evolution of Classes BINARY COMPATIBILITY

The impact of changes to types on pre-existing native methods that are not
recompiled is beyond the scope of this specification and should be provided with
the description of an implementation. Implementations are encouraged, but not
required, to implement native methods in a way that limits such impact.

134.19 static Methods

If a method that is not declared private is also declared static (that is, a class
method) and is changed to not be declared static (that is, to an instance method),
or vice versa, then compatibility with pre-existing binaries may be broken, resulting
in a linkage time error, namely an IncompatibleClassChangeError, if these
methods are used by the pre-existing binaries. Such changes are not recommended
in code that has been widely distributed.

13.4.20 synchronized Methods

Adding or deleting a synchronized modifier of a method does not break
compatibility with pre-existing binaries.

13.4.21 Method and Constructor Throws

Changes to the throws clause of methods or constructors do not break compatibility
with pre-existing binaries; these clauses are checked only at compile time.

13.4.22 Method and Constructor Body

Changes to the body of a method or constructor do not break compatibility with
pre-existing binaries.

The keyword final on a method does not mean that the method can be safely
inlined; it means only that the method cannot be overridden. It is still possible that a
new version of that method will be provided at link-time. Furthermore, the structure
of the original program must be preserved for purposes of reflection.

Therefore, we note that a Java compiler cannot expand a method inline at compile
time. In general we suggest that implementations use late-bound (run-time) code
generation and optimization.
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13.4.23 Method and Constructor Overloading

Adding new methods or constructors that overload existing methods or constructors
does not break compatibility with pre-existing binaries. The signature to be used
for each invocation was determined when these existing binaries were compiled;
therefore newly added methods or constructors will not be used, even if their
signatures are both applicable and more specific than the signature originally
chosen.

While adding a new overloaded method or constructor may cause a compile-time
error the next time a class or interface is compiled because there is no method or
constructor that is most specific (§15.12.2.5), no such error occurs when a program
is executed, because no overload resolution is done at execution time.

Example 13.4.23-1. Adding An Overloaded Method

class Super {
static void out(float £f) {
System.out.println("float");

}
}

class Test {
public static void main(String[] args) {
Super.out(2);
}
}
This program produces the output:
float

Suppose that a new version of class Super is produced:

class Super {
static void out(float f) { System.out.println("float"); }
static void out(int i) { System.out.println("int"); }

}

If super is recompiled but not Test, then running the new binary with the existing binary
of Test still produces the output:

float
However, if Test is then recompiled, using this new Super, the output is then:
int

as might have been naively expected in the previous case.
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13.4.24 Method Overriding

If an instance method is added to a subclass and it overrides a method in a
superclass, then the subclass method will be found by method invocations in pre-
existing binaries, and these binaries are not impacted.

If a class method is added to a class, then this method will not be found unless the
qualifying type of the reference is the subclass type.

13.4.25 Static Initializers

Adding, deleting, or changing a static initializer (§8.7) of a class does not impact
pre-existing binaries.

13.4.26 Evolution of Enums

Adding or reordering constants in an enum will not break compatibility with pre-
existing binaries.

If a pre-existing binary attempts to access an enum constant that no longer exists,
the client will fail at run time with a NoSuchFieldError. Therefore such a change
is not recommended for widely distributed enums.

In all other respects, the binary compatibility rules for enums are identical to those
for classes.

13.5 Evolution of Interfaces

This section describes the impact of changes to the declaration of an interface and
its members on pre-existing binaries.

13.5.1 public Interfaces

Changing an interface that is not declared public to be declared public does not
break compatibility with pre-existing binaries.

If an interface that is declared public is changed to not be declared public, then
an IllegalAccessError is thrown if a pre-existing binary is linked that needs but
no longer has access to the interface type, so such a change is not recommended
for widely distributed interfaces.
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13.5.2 Superinterfaces

Changes to the interface hierarchy cause errors in the same way that changes to
the class hierarchy do, as described in §13.4.4. In particular, changes that result in
any previous superinterface of a class no longer being a superinterface can break
compatibility with pre-existing binaries, resulting in a verifyError.

13.5.3 Interface Members

Adding an abstract method to an interface does not break compatibility with pre-
existing binaries.

A field added to a superinterface of ¢ may hide a field inherited from
a superclass of c. If the original reference was to an instance field, an
IncompatibleClassChangeError will result. If the original reference was an
assignment, an IllegalAccessError will result.

Deleting a member from an interface may cause linkage errors in pre-existing
binaries.

Example 13.5.3-1. Deleting An Interface Member

interface I { void hello(); }
class Test implements I {
public static void main(String[] args) {
I anI = new Test();
anI.hello();
}

public void hello() { System.out.println("hello"); }
}
This program produces the output:
hello
Suppose that a new version of interface I is compiled:

interface I {}

If 1 is recompiled but not Test, then running the new binary with the existing binary for
Test will result in a NoSuchMethodError.
13.54 Interface Type Parameters

The effects of changes to the type parameters of an interface are the same as those
of analogous changes to the type parameters of a class.
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13.5.5 Field Declarations

The considerations for changing field declarations in interfaces are the same as
those for static final fields in classes, as described in §13.4.8 and §13.4.9.

13.5.6 Interface Method Declarations

The considerations for changing abstract method declarations in interfaces
include those for abstract methods in classes, as described in §13.4.14,§13.4.15,
§13.4.19,§13.4.21,and §13.4.23.

Adding a default method, or changing a method from abstract to default,
does not break compatibility with pre-existing binaries, but may cause an
IncompatibleClassChangeError if a pre-existing binary attempts to invoke the
method. This error occurs if the qualifying type, T, is a subtype of two interfaces, 1
and J, where both 7 and 7 declare a default method with the same signature and
result, and neither 1 nor Jis a subinterface of the other.

In other words, adding a default method is a binary-compatible change because it
does not introduce errors at link time, even if it introduces errors at compile time or
invocation time. In practice, the risk of accidental clashes occurring by introducing
a default method are similar to those associated with adding a new method to a
non-final class. In the event of a clash, adding a method to a class is unlikely to
trigger a LinkageError, but an accidental override of the method in a child can lead
to unpredictable method behavior. Both changes can cause errors at compile time.

Example 13.5.6-1. Adding A Default Method
interface Painter {
default void draw() {

System.out.println("Here's a picture...");

}
}

interface Cowboy {}
public class CowboyArtist implements Cowboy, Painter {

public static void main(String... args) {
new CowboyArtist().draw();

}
This program produces the output:
Here's a picture...

Suppose that a default method is added to Cowboy:
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interface Cowboy {
default void draw() {
System.out.println("Bang!");
}
}

If cowboy is recompiled but not CowboyArtist, then running the new binary
with the existing binary for CowboyArtist will link without error but cause an
IncompatibleClassChangeError when main attempts to invoke draw().

13.5.7 Evolution of Annotation Types

Annotation types behave exactly like any other interface. Adding or removing an
element from an annotation type is analogous to adding or removing a method.
There are important considerations governing other changes to annotation types,
such as making an annotation type repeatable (§9.6.3), but these have no effect on
the linkage of binaries by the Java Virtual Machine. Rather, such changes affect
the behavior of reflective APIs that manipulate annotations. The documentation
of these APIs specifies their behavior when various changes are made to the
underlying annotation types.

Adding or removing annotations has no effect on the correct linkage of the binary
representations of programs in the Java programming language.
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CHAPTER1 I

Blocks and Statements

THE sequence of execution of a program is controlled by statements, which are
executed for their effect and do not have values.

Some statements contain other statements as part of their structure; such other
statements are substatements of the statement. We say that statement s immediately
contains statement U if there is no statement T different from s and u such that
s contains T and T contains v. In the same manner, some statements contain
expressions (§15 (Expressions)) as part of their structure.

The first section of this chapter discusses the distinction between normal and
abrupt completion of statements (§14.1). Most of the remaining sections explain
the various kinds of statements, describing in detail both their normal behavior and
any special treatment of abrupt completion.

Blocks are explained first (§14.2), followed by local class declarations (§14.3) and
local variable declaration statements (§14.4).

Next a grammatical maneuver that sidesteps the familiar "dangling else" problem
(§14.5) is explained.

The last section (§14.21) of this chapter addresses the requirement that every
statement be reachable in a certain technical sense.

14.1 Normal and Abrupt Completion of Statements

Every statement has a normal mode of execution in which certain computational
steps are carried out. The following sections describe the normal mode of execution
for each kind of statement.
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If all the steps are carried out as described, with no indication of abrupt completion,
the statement is said to complete normally. However, certain events may prevent
a statement from completing normally:

* The break (§14.15),continue (§14.16),and return (§14.17) statements cause a
transfer of control that may prevent normal completion of statements that contain
them.

» Evaluation of certain expressions may throw exceptions from the Java Virtual
Machine (§15.6). An explicit throw (§14.18) statement also results in an
exception. An exception causes a transfer of control that may prevent normal
completion of statements.

If such an event occurs, then execution of one or more statements may be
terminated before all steps of their normal mode of execution have completed; such
statements are said to complete abruptly.

An abrupt completion always has an associated reason, which is one of the
following:

* A break with no label

* A break with a given label

* A continue with no label

* A continue with a given label
* A return with no value

* A return with a given value

* A throw with a given value, including exceptions thrown by the Java Virtual
Machine

The terms "complete normally" and "complete abruptly" also apply to the
evaluation of expressions (§15.6). The only reason an expression can complete
abruptly is that an exception is thrown, because of either a throw with a given value
(§14.18) or a run-time exception or error (§11 (Exceptions), §15.6).

If a statement evaluates an expression, abrupt completion of the expression always
causes the immediate abrupt completion of the statement, with the same reason.
All succeeding steps in the normal mode of execution are not performed.

Unless otherwise specified in this chapter, abrupt completion of a substatement
causes the immediate abrupt completion of the statement itself, with the same
reason, and all succeeding steps in the normal mode of execution of the statement
are not performed.
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Unless otherwise specified, a statement completes normally if all expressions it
evaluates and all substatements it executes complete normally.

14.2 Blocks

A block is a sequence of statements, local class declarations, and local variable
declaration statements within braces.

Block:
{ [BlockStatements] }

BlockStatements:
BlockStatement { BlockStatement}

BlockStatement:
LocalVariableDeclarationStatement
ClassDeclaration
Statement

A block is executed by executing each of the local variable declaration statements
and other statements in order from first to last (left to right). If all of these block
statements complete normally, then the block completes normally. If any of these
block statements complete abruptly for any reason, then the block completes
abruptly for the same reason.

14.3 Local Class Declarations

A local class is a nested class (§8 (Classes)) that is not a member of any class and
that has a name (§6.2, §6.7).

All local classes are inner classes (§8.1.3).

Every local class declaration statement is immediately contained by a block
(§14.2). Local class declaration statements may be intermixed freely with other
kinds of statements in the block.

It is a compile-time error if a local class declaration contains any of the access
modifiers public, protected, or private (§6.6), or the modifier static (§8.1.1).

The scope and shadowing of a local class declaration is specified in §6.3 and §6.4.
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Example 14.3-1. Local Class Declarations

Here is an example that illustrates several aspects of the rules given above:

class Global {
class Cyclic {}

void foo() {
new Cyclic(); // create a Global.Cyclic
class Cyclic extends Cyclic {} // circular definition

{
class Local {}
{
class Local {} // compile-time error
}
class Local {} // compile-time error
class AnotherLocal {
void bar() {
class Local {} // ok
}
}
}

class Local {} // ok, not in scope of prior Local

The first statement of method foo creates an instance of the member class Global.Cyclic
rather than an instance of the local class Cyclic, because the statement appears prior to
the scope of the local class declaration.

The fact that the scope of a local class declaration encompasses its whole declaration (not
only its body) means that the definition of the local class Cyclic is indeed cyclic because it
extends itself rather than Global.Cyclic. Consequently, the declaration of the local class
Cyclic is rejected at compile time.

Since local class names cannot be redeclared within the same method (or constructor or
initializer, as the case may be), the second and third declarations of Local result in compile-
time errors. However, Local can be redeclared in the context of another, more deeply
nested, class such as AnotherLocal.

The final declaration of Local is legal, since it occurs outside the scope of any prior
declaration of Local.

14.4 Local Variable Declaration Statements

A local variable declaration statement declares one or more local variable names.
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LocalVariableDeclarationStatement:
LocalVariableDeclaration ;

LocalVariableDeclaration:
{VariableModifier} UnannType VariableDeclaratorList

See §8.3 for UnannType. The following productions from §4.3, §8.4.1, and §8.3 are shown
here for convenience:

VariableModifier:
(one of)

Annotation £inal

VariableDeclaratorList:
VariableDeclarator {, VariableDeclarator}

VariableDeclarator:
VariableDeclaratorld [= Variablelnitializer]

VariableDeclaratorld:
Identifier [Dims]

Dims:
{Annotation} [ ] {{Annotation} [ 1}

Variablelnitializer:
Expression
Arraylnitializer

Every local variable declaration statement is immediately contained by a block.
Local variable declaration statements may be intermixed freely with other kinds of
statements in the block.

Apart from local variable declaration statements, a local variable declaration can
appear in the header of a for statement (§14.14) or try-with-resources statement
(§14.20.3). In these cases, it is executed in the same manner as if it were part of a
local variable declaration statement.

The rules for annotation modifiers on a local variable declaration are specified in
§9.7.4 and §9.7.5.

It is a compile-time error if £inal appears more than once as a modifier for a local
variable declaration.

144.1 Local Variable Declarators and Types

Each declarator in a local variable declaration declares one local variable, whose
name is the Identifier that appears in the declarator.
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If the optional keyword final appears at the start of the declaration, the variable
being declared is a final variable (§4.12.4).

The declared type of a local variable is denoted by UnannType if no bracket
pairs appear in UnannType and VariableDeclaratorld, and is specified by §10.2
otherwise.

A local variable of type float always contains a value that is an element of the
float value set (§4.2.3); similarly, a local variable of type double always contains
a value that is an element of the double value set. It is not permitted for a local
variable of type £loat to contain an element of the float-extended-exponent value
set that is not also an element of the float value set, nor for a local variable of type
double to contain an element of the double-extended-exponent value set that is not
also an element of the double value set.

The scope and shadowing of a local variable declaration is specified in §6.3 and
§6.4.

14.4.2 Execution of Local Variable Declarations

A local variable declaration statement is an executable statement. Every time it is
executed, the declarators are processed in order from left to right. If a declarator
has an initializer, the initializer is evaluated and its value is assigned to the variable.

If a declarator does not have an initializer, then every reference to the variable must be
preceded by execution of an assignment to the variable, or a compile-time error occurs by
the rules of §16 (Definite Assignment).

Each initializer (except the first) is evaluated only if evaluation of the preceding
initializer completes normally.

Execution of the local variable declaration completes normally only if evaluation
of the last initializer completes normally.

If the local variable declaration contains no initializers, then executing it always
completes normally.

14.5 Statements

There are many kinds of statements in the Java programming language. Most
correspond to statements in the C and C++ languages, but some are unique.
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Asin C and C++, the if statement of the Java programming language suffers from
the so-called "dangling else problem," illustrated by this misleadingly formatted
example:

if (door.isOpen())
if (resident.isVisible())
resident.greet("Hello!");
else door.bell.ring(); // A "dangling else"

The problem is that both the outer if statement and the inner if statement might
conceivably own the else clause. In this example, one might surmise that the
programmer intended the else clause to belong to the outer if statement.

The Java programming language, like C and C++ and many programming
languages before them, arbitrarily decrees that an else clause belongs to the
innermost if to which it might possibly belong. This rule is captured by the
following grammar:

Statement:
StatementWithoutTrailingSubstatement
LabeledStatement
IfThenStatement
IfThenElseStatement
WhileStatement
ForStatement

StatementNoShortlf:
StatementWithoutTrailingSubstatement
LabeledStatementNoShortlf
IfThenElseStatementNoShortlf
WhileStatementNoShortlf
ForStatementNoShortlf

4.5
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StatementWithoutTrailingSubstatement:

Block
EmptyStatement
ExpressionStatement
AssertStatement
SwitchStatement
DoStatement
BreakStatement
ContinueStatement
ReturnStatement
SynchronizedStatement
ThrowStatement
TryStatement

IfThenStatement:
if ( Expression ) Statement

IfThenElseStatement:

if ( Expression ) StatementNoShortlf else Statement

IfThenElseStatementNoShortlf:

BLOCKS AND STATEMENTS

The following productions from §14.9 are shown here for convenience:

if ( Expression ) StatementNoShortlf else StatementNoShortlf

14.6 The Empty Statement

An empty statement does nothing.

Statements are thus grammatically divided into two categories: those that might
end in an if statement that has no else clause (a "short if statement") and those
that definitely do not.

Only statements that definitely do not end in a short if statement may appear as
an immediate substatement before the keyword else in an if statement that does
have an else clause.

This simple rule prevents the "dangling else" problem. The execution behavior of
a statement with the "no short i£" restriction is identical to the execution behavior
of the same kind of statement without the "no short if" restriction; the distinction
is drawn purely to resolve the syntactic difficulty.
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EmptyStatement:

.
I

Execution of an empty statement always completes normally.

14.7 Labeled Statements

Statements may have label prefixes.

LabeledStatement:
ldentifier : Statement

LabeledStatementNoShortlf:
Identifier : StatementNoShortlf

The Identifier is declared to be the label of the immediately contained Statement.

Unlike C and C++, the Java programming language has no goto statement;
identifier statement labels are used with break or continue statements (§14.15,
§14.16) appearing anywhere within the labeled statement.

The scope of a label of a labeled statement is the immediately contained Statement.

It is a compile-time error if the name of a label of a labeled statement is used within
the scope of the label as a label of another labeled statement.

There is no restriction against using the same identifier as a label and as the name
of a package, class, interface, method, field, parameter, or local variable. Use of an
identifier to label a statement does not obscure (§6.4.2) a package, class, interface,
method, field, parameter, or local variable with the same name. Use of an identifier
as a class, interface, method, field, local variable or as the parameter of an exception
handler (§14.20) does not obscure a statement label with the same name.

A labeled statement is executed by executing the immediately contained Statement.

If the statement is labeled by an Identifier and the contained Statement completes
abruptly because of a break with the same Identifier, then the labeled statement
completes normally. In all other cases of abrupt completion of the Statement, the
labeled statement completes abruptly for the same reason.

Example 14.7-1. Labels and Identifiers

The following code was taken from a version of the class String and its method indexOf,
where the label was originally called test. Changing the label to have the same name as
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the local variable i does not obscure the label in the scope of the declaration of i. Thus,
the code is valid.

class Test {
char[] value;
int offset, count;
int indexOf (TestString str, int fromIndex) {
char[] vl = value, v2 = str.value;
int max = offset + (count - str.count);
int start = offset + ((fromIndex < 0) ? 0 : fromIndex);

for (int i = start; i <= max; i++) {
int n = str.count, j = i, k = str.offset;
while (n-- != 0) {
if (v1[j++] 1= v2[k++])
continue i;

}

return i - offset;

}

return -1;
}

The identifier max could also have been used as the statement label; the label would not
obscure the local variable max within the labeled statement.

14.8 Expression Statements

Certain kinds of expressions may be used as statements by following them with
semicolons.

ExpressionStatement:
StatementExpression ;

StatementExpression:
Assignment
PrelncrementExpression
PreDecrementExpression
PostIncrementExpression
PostDecrementExpression
Methodlnvocation
ClassInstanceCreationExpression

An expression statement is executed by evaluating the expression; if the expression
has a value, the value is discarded.

420



BLOCKS AND STATEMENTS The if Statement

Execution of the expression statement completes normally if and only if evaluation
of the expression completes normally.

Unlike C and C++, the Java programming language allows only certain forms of
expressions to be used as expression statements. For example, it is legal to use a method
invocation expression (§15.12):

System.out.println("Hello world"); // OK
but it is not legal to use a parenthesized expression (§15.8.5):
(System.out.println("Hello world")); // illegal

Note that the Java programming language does not allow a "cast to void" - void is not a
type - so the traditional C trick of writing an expression statement such as:

(void)... ; // incorrect!

does not work. On the other hand, the Java programming language allows all the most useful
kinds of expressions in expression statements, and it does not require a method invocation
used as an expression statement to invoke a void method, so such a trick is almost never
needed. If a trick is needed, either an assignment statement (§15.26) or a local variable
declaration statement (§14.4) can be used instead.

149 The if Statement

The if statement allows conditional execution of a statement or a conditional
choice of two statements, executing one or the other but not both.

IfThenStatement:
if ( Expression ) Statement

IfThenElseStatement:
if ( Expression ) StatementNoShortlf else Statement

IfThenElseStatementNoShortlf:
if ( Expression ) StatementNoShortlf else StatementNoShortlf

The Expression must have type boolean Or Boolean, Or a compile-time error
occurs.

14.9
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149.1 The if-then Statement

An if-then statement is executed by first evaluating the Expression. If the result
is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the if-then statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

e If the value is true, then the contained Statement is executed; the if-then
statement completes normally if and only if execution of the Statement completes
normally.

e If the value is false, no further action is taken and the if-then statement
completes normally.

14.9.2 The if-then-else Statement

An if-then-else statement is executed by first evaluating the Expression. If the
result is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, then the if-then-else statement completes
abruptly for the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

¢ If the value is true, then the first contained Statement (the one before the else
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

¢ If the value is false, then the second contained Statement (the one after the else
keyword) is executed; the if-then-else statement completes normally if and
only if execution of that statement completes normally.

14.10 The assert Statement

An assertion is an assert statement containing a boolean expression. An assertion
1s either enabled or disabled. If an assertion is enabled, execution of the assertion
causes evaluation of the boolean expression and an error is reported if the
expression evaluates to false. If the assertion is disabled, execution of the assertion
has no effect whatsoever.
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AssertStatement:
assert Expression ;
assert Expression : Expression ;

To ease the presentation, the first Expression in both forms of the assert statement
is referred to as Expressionl. In the second form of the assert statement, the
second Expression is referred to as Expression2.

It is a compile-time error if Expressionl does not have type boolean or Boolean.

In the second form of the assert statement, it is a compile-time error if Expression2
is void (§15.1).

An assert statement that is executed after its class or interface has completed
initialization is enabled if and only if the host system has determined that the
top level class or interface that lexically contains the assert statement enables
assertions.

Whether a top level class or interface enables assertions is determined no later
than the earliest of i) the initialization of the top level class or interface, and ii)
the initialization of any class or interface nested in the top level class or interface.
Whether a top level class or interface enables assertions cannot be changed after
it has been determined.

An assert statement that is executed before its class or interface has completed
initialization is enabled.

This rule is motivated by a case that demands special treatment. Recall that the assertion
status of a class is set no later than the time it is initialized. It is possible, though generally
not desirable, to execute methods or constructors prior to initialization. This can happen
when a class hierarchy contains a circularity in its static initialization, as in the following
example:

public class Foo {
public static void main(String[] args) {
Baz.testAsserts();
// Will execute after Baz is initialized.

}
}
class Bar {
static {
Baz.testAsserts();
// Will execute before Baz is initialized!
}
}

class Baz extends Bar {
static void testAsserts() {
boolean enabled = false;

14.10
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assert enabled = true;
System.out.println("Asserts " +
(enabled ? "enabled" : "disabled"));
}
}

Invoking Baz.testAsserts () causes Baz to be initialized. Before this can happen, Bar
must be initialized. Bar's static initializer again invokes Baz.testAsserts (). Because
initialization of Baz is already in progress by the current thread, the second invocation
executes immediately, though Baz is not initialized (§12.4.2).

Because of the rule above, if the program above is executed without enabling assertions,
it must print:

Asserts enabled
Asserts disabled

A disabled assert statement does nothing. In particular, neither Expressionl
nor Expression2 (if it is present) are evaluated. Execution of a disabled assert
statement always completes normally.

An enabled assert statement is executed by first evaluating Expressionl. If the
result is of type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of Expressionl or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the assert statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the value of
Expressionl:

* Ifthe value is true, no further action is taken and the assert statement completes
normally.

e If the value is false, the execution behavior depends on whether Expression2
is present:

— If Expression2 is present, it is evaluated. Then:

> If the evaluation completes abruptly for some reason, the assert statement
completes abruptly for the same reason.

> If the evaluation completes normally, an AssertionError instance whose
"detail message" is the resulting value of Expression2 is created. Then:

» If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.
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» If the instance creation completes normally, the assert statement
completes abruptly by throwing the newly created AssertionError
object.

— If Expression2 is not present, an AssertionError instance with no "detail
message" is created. Then:

> If the instance creation completes abruptly for some reason, the assert
statement completes abruptly for the same reason.

> If the instance creation completes normally, the assert statement completes
abruptly by throwing the newly created AssertionError object.

Typically, assertion checking is enabled during program development and testing, and
disabled for deployment, to improve performance.

Because assertions may be disabled, programs must not assume that the expressions
contained in assertions will be evaluated. Thus, these boolean expressions should generally
be free of side effects. Evaluating such a boolean expression should not affect any state
that is visible after the evaluation is complete. It is not illegal for a boolean expression
contained in an assertion to have a side effect, but it is generally inappropriate, as it could
cause program behavior to vary depending on whether assertions were enabled or disabled.

In light of this, assertions should not be used for argument checking in public methods.
Argument checking is typically part of the contract of a method, and this contract must be
upheld whether assertions are enabled or disabled.

A secondary problem with using assertions for argument checking is that
erroneous arguments should result in an appropriate run-time exception
(such as IllegalArgumentException, ArrayIndexOutOfBoundsException, or
NullPointerException). An assertion failure will not throw an appropriate exception.
Again, it is not illegal to use assertions for argument checking on public methods, but it
is generally inappropriate. It is intended that AssertionError never be caught, but it is
possible to do so, thus the rules for try statements should treat assertions appearing in a
try block similarly to the current treatment of throw statements.

14.11 The switch Statement

The switch statement transfers control to one of several statements depending on
the value of an expression.

SwitchStatement:
switch ( Expression ) SwitchBlock
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SwitchBlock:
{ {SwitchBlockStatementGroup } { SwitchLabel} }

SwitchBlockStatementGroup:
SwitchLabels BlockStatements

SwitchLabels:
SwitchLabel {SwitchLabel}

SwitchLabel.:
case ConstantExpression :
case EnumConstantName :
default :

EnumConstantName:
Identifier

The type of the Expression must be char, byte, short, int, Character, Byte,
Short, Integer, String, or an enum type (§8.9), or a compile-time error occurs.

The body of a switch statement is known as a switch block. Any statement
immediately contained by the switch block may be labeled with one or more switch
labels, which are case or default labels. Every case label has a case constant,
which is either a constant expression or the name of an enum constant. Switch
labels and their case constants are said to be associated with the switch statement.

Given a switch statement, all of the following must be true or a compile-time error
occurs:

» Every case constant associated with the switch statement must be assignment
compatible with the type of the switch statement's Expression (§5.2).

 If the type of the switch statement's Expression is an enum type, then every
case constant associated with the switch statement must be an enum constant
of that type.

¢ No two of the case constants associated with the switch statement have the
same value.

¢ No case constant associated with the switch statement iS null.

¢ At most one default label is associated with the switch statement.

The prohibition against using null as a case constant prevents code being written that
can never be executed. If the switch statement's Expression is of a reference type, that is,
String or a boxed primitive type or an enum type, then an exception will be thrown will
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occur if the Expression evaluates to null at run time. In the judgment of the designers of
the Java programming language, this is a better outcome than silently skipping the entire
switch statement or choosing to execute the statements (if any) after the default label
(if any).

A Java compiler is encouraged (but not required) to provide a warning if a switch on an
enum-valued expression lacks a default label and lacks case labels for one or more of
the enum's constants. Such a switch will silently do nothing if the expression evaluates
to one of the missing constants.

In C and C++ the body of a switch statement can be a statement and statements with case
labels do not have to be immediately contained by that statement. Consider the simple loop:

for (i = 0; 1 < n; ++i) foo();

where n is known to be positive. A trick known as Duff's device can be used in C or C++
to unroll the loop, but this is not valid code in the Java programming language:

int g = (n+7)/8;
switch (n%8) {

case 0: do { foo(); // Great C hack, Tom,

case 7: foo(); // but it's not valid here.
case 6: foo();

case 5: foo();

case 4: foo();

case 3: foo();

case 2: foo();

case 1: foo();

} while (--g > 0);

Fortunately, this trick does not seem to be widely known or used. Moreover, it is less needed
nowadays; this sort of code transformation is properly in the province of state-of-the-art
optimizing compilers.

When the switch statement is executed, first the Expression is evaluated. If the
Expression evaluates to null, a NullPointerException is thrown and the entire
switch statement completes abruptly for that reason. Otherwise, if the result is of
a reference type, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the switch statement completes abruptly for
the same reason.

Otherwise, execution continues by comparing the value of the Expression with each
case constant, and there is a choice:

14.11
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If one of the case constants is equal to the value of the expression, then we say
that the case label matches. All statements after the matching case label in the
switch block, if any, are executed in sequence.

If all these statements complete normally, or if there are no statements after the
matching case label, then the entire switch statement completes normally.

If no case label matches but there is a default label, then all statements after
the default label in the switch block, if any, are executed in sequence.

If all these statements complete normally, or if there are no statements after the
default label, then the entire switch statement completes normally.

If no case label matches and there is no default label, then no further action is
taken and the switch statement completes normally.

If any statement immediately contained by the Block body of the switch statement
completes abruptly, it is handled as follows:

* If execution of the Statement completes abruptly because of a break with no

label, no further action is taken and the switch statement completes normally.

* If execution of the Statement completes abruptly for any other reason, the switch

statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the general
rule for labeled statements (§14.7).

Example 14.11-1. Fall-Through in the switch Statement

As in C and C++, execution of statements in a switch block "falls through labels."
For example, the program:

class TooMany {
static void howMany(int k) {
switch (k) {
case 1l: System.out.print("one ");
case 2: System.out.print("too ");
case 3: System.out.println("many");
}
}
public static void main(String[] args) {
howMany (3);
howMany(2);
howMany(1);
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contains a switch block in which the code for each case falls through into the code for
the next case. As a result, the program prints:

many
too many
one too many

If code is not to fall through case to case in this manner, then break statements should
be used, as in this example:

class TwoMany {
static void howMany(int k) {
switch (k) {
case 1: System.out.println("one");
break; // exit the switch
case 2: System.out.println("two");
break; // exit the switch
case 3: System.out.println("many");
break; // not needed, but good style
}
}
public static void main(String[] args) {
howMany(1);
howMany(2);
howMany(3);

}
This program prints:

one
two
many

14.12 The while Statement

The while statement executes an Expression and a Statement repeatedly until the
value of the Expression is false.

WhileStatement:
while ( Expression ) Statement

WhileStatementNoShortlf:
while ( Expression ) StatementNoShortlf
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The Expression must have type boolean Or Boolean, or a compile-time error
occurs.

A while statement is executed by first evaluating the Expression. If the result is of
type Boolean, it is subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the while statement completes abruptly for
the same reason.

Otherwise, execution continues by making a choice based on the resulting value:

¢ If the value is true, then the contained Statement is executed. Then there is a
choice:

— If execution of the Statement completes normally, then the entire while
statement is executed again, beginning by re-evaluating the Expression.

— If execution of the Statement completes abruptly, see §14.12.1.

e If the (possibly unboxed) value of the Expression is false, no further action is
taken and the while statement completes normally.

If the (possibly unboxed) value of the Expression is £alse the first time it is evaluated,
then the Statement is not executed.

14.12.1 Abrupt Completion of while Statement

Abrupt completion of the contained Statement is handled in the following manner:

 If execution of the Statement completes abruptly because of a break with no
label, no further action is taken and the while statement completes normally.

* If execution of the Statement completes abruptly because of a continue with no
label, then the entire while statement is executed again.

* If execution of the Statement completes abruptly because of a continue with
label 1, then there is a choice:

— If the while statement has label L, then the entire while statement is executed
again.

— If the while statement does not have label L, the while statement completes
abruptly because of a continue with label L.

* If execution of the Statement completes abruptly for any other reason, the while
statement completes abruptly for the same reason.
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The case of abrupt completion because of a break with a label is handled by the general
rule for labeled statements (§14.7).

14.13 The do Statement

The do statement executes a Statement and an Expression repeatedly until the value
of the Expression is false.

DoStatement:
do Statement while ( Expression ) ;

The Expression must have type boolean Or Boolean, or a compile-time error
occurs.
A do statement is executed by first executing the Statement. Then there is a choice:

e If execution of the Statement completes normally, then the Expression is
evaluated. If the result is of type Boolean, it is subject to unboxing conversion
(85.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly for some reason, the do statement completes abruptly for the
same reason.

Otherwise, there is a choice based on the resulting value:
— If the value is true, then the entire do statement is executed again.

— If the value is false, no further action is taken and the do statement completes
normally.

* If execution of the Statement completes abruptly, see §14.13.1.

Executing a do statement always executes the contained Statement at least once.

14.13.1 Abrupt Completion of do Statement

Abrupt completion of the contained Statement is handled in the following manner:

* If execution of the Statement completes abruptly because of a break with no
label, then no further action is taken and the do statement completes normally.
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 If execution of the Statement completes abruptly because of a continue with
no label, then the Expression is evaluated. Then there is a choice based on the
resulting value:

— If the value is true, then the entire do statement is executed again.

— If the value is false, no further action is taken and the do statement completes
normally.

* If execution of the Statement completes abruptly because of a continue with
label 1, then there is a choice:

— If the do statement has label r, then the Expression is evaluated. Then there
is a choice:

> If the value of the Expression is true, then the entire do statement is
executed again.

> If the value of the Expression is false, no further action is taken and the do
statement completes normally.

— If the do statement does not have label z, the do statement completes abruptly
because of a continue with label z.

 If execution of the Statement completes abruptly for any other reason, the do
statement completes abruptly for the same reason.

The case of abrupt completion because of a break with a label is handled by the general
rule for labeled statements (§14.7).
Example 14.13-1. The do Statement

The following code is one possible implementation of the toHexString method of class
Integer:

public static String toHexString(int i) {
StringBuffer buf = new StringBuffer(8);

do {
buf.append(Character.forDigit(i & 0xF, 16));
i >>>= 4;

} while (i != 0);

return buf.reverse().toString();

}

Because at least one digit must be generated, the do statement is an appropriate control
structure.
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14.14 The for Statement

The for statement has two forms:

¢ The basic for statement.

¢ The enhanced for statement
ForStatement:

BasicForStatement
EnhancedForStatement

ForStatementNoShortlf:
BasicForStatementNoShortlf
EnhancedForStatementNoShortlf

14.14.1 The basic for Statement

The basic for statement executes some initialization code, then executes an
Expression, a Statement, and some update code repeatedly until the value of the
Expression is false.

BasicForStatement:
for ( [Forlnit] ; [Expression] ; [ForUpdate] ) Statement

BasicForStatementNoShortlf:
for ( [Forlnit] ; [Expression] ; [ForUpdate] y StatementNoShortlf

Forlnit:
StatementExpressionList
LocalVariableDeclaration

ForUpdate:
StatementExpressionList

StatementExpressionList:
StatementExpression {, StatementExpression}

The Expression must have type boolean or Boolean, or a compile-time error
occurs.

The scope and shadowing of a local variable declared in the Forlnit part of a basic
for statement is specified in §6.3 and §6.4.
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14.14.1.1 Initialization of for Statement

A for statement is executed by first executing the Forlnit code:

If the Forlnit code is a list of statement expressions (§14.8), the expressions are
evaluated in sequence from left to right; their values, if any, are discarded.

If evaluation of any expression completes abruptly for some reason, the for
statement completes abruptly for the same reason; any Forlnit statement
expressions to the right of the one that completed abruptly are not evaluated.

If the Forlnit code is a local variable declaration (§14.4), it is executed as if it
were a local variable declaration statement appearing in a block.

If execution of the local variable declaration completes abruptly for any reason,
the for statement completes abruptly for the same reason.

If the Forlnit part is not present, no action is taken.

14.14.1.2 Iteration of for Statement

Next, a for iteration step is performed, as follows:

If the Expression is present, it is evaluated. If the result is of type Boolean, it is
subject to unboxing conversion (§5.1.8).

If evaluation of the Expression or the subsequent unboxing conversion (if any)
completes abruptly, the for statement completes abruptly for the same reason.

Otherwise, there is then a choice based on the presence or absence of the Expression and
the resulting value if the Expression is present; see next bullet.

If the Expression is not present, or it is present and the value resulting from
its evaluation (including any possible unboxing) is true, then the contained
Statement is executed. Then there is a choice:

— If execution of the Statement completes normally, then the following two steps
are performed in sequence:

1. First, if the ForUpdate part is present, the expressions are evaluated
in sequence from left to right; their values, if any, are discarded. If
evaluation of any expression completes abruptly for some reason, the
for statement completes abruptly for the same reason; any ForUpdate
statement expressions to the right of the one that completed abruptly are
not evaluated.

If the ForUpdate part is not present, no action is taken.
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2. Second, another for iteration step is performed.
— If execution of the Statement completes abruptly, see §14.14.1.3.

* If the Expression is present and the value resulting from its evaluation (including
any possible unboxing) is false, no further action is taken and the for statement
completes normally.

If the (possibly unboxed) value of the Expression is false the first time it is evaluated,
then the Statement is not executed.

If the Expression is not present, then the only way a for statement can complete
normally is by use of a break statement.

14.14.1.3 Abrupt Completion of for Statement
Abrupt completion of the contained Statement is h