
1/4 Vector (Java Platform SE 6).pdf (#22)2016-05-03 18:25:30

Overview Package Class Use Tree Deprecated Index Help Java™ Platform
Standard Ed. 6 PREV CLASS NEXT CLASS FRAMES NO FRAMES All Classes All Classes

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

java.util
Class Vector<E>
java.lang.Object
 java.util.AbstractCollection<E>
 java.util.AbstractList<E>
 java.util.Vector<E>

All Implemented Interfaces:
Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess

Direct Known Subclasses:
Stack

public class Vector<E>
extends AbstractList<E>
implements List<E>, RandomAccess, Cloneable, Serializable

The Vector class implements a growable array of objects. Like an array, it contains components that can
be accessed using an integer index. However, the size of a Vector can grow or shrink as needed to
accommodate adding and removing items after the Vector has been created.

Each vector tries to optimize storage management by maintaining a capacity and a capacityIncrement.
The capacity is always at least as large as the vector size; it is usually larger because as components are
added to the vector, the vector's storage increases in chunks the size of capacityIncrement. An
application can increase the capacity of a vector before inserting a large number of components; this
reduces the amount of incremental reallocation.

The Iterators returned by Vector's iterator and listIterator methods are fail-fast: if the Vector is structurally
modified at any time after the Iterator is created, in any way except through the Iterator's own remove or
add methods, the Iterator will throw a ConcurrentModificationException. Thus, in the face of concurrent
modification, the Iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic
behavior at an undetermined time in the future. The Enumerations returned by Vector's elements method
are not fail-fast.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible
to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators
throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a
program that depended on this exception for its correctness: the fail-fast behavior of iterators should be
used only to detect bugs.

As of the Java 2 platform v1.2, this class was retrofitted to implement the List interface, making it a
member of the Java Collections Framework. Unlike the new collection implementations, Vector is
synchronized.

Since:
JDK1.0

See Also:

2/4 Vector (Java Platform SE 6).pdf (2/4)2016-05-03 18:25:30

Collection, List, ArrayList, LinkedList, Serialized Form

Field Summary
protected

 int
capacityIncrement
 The amount by which the capacity of the vector is automatically incremented when its
size becomes greater than its capacity.

protected
 int

elementCount
 The number of valid components in this Vector object.

protected
 Object[]

elementData
 The array buffer into which the components of the vector are stored.

Fields inherited from class java.util.AbstractList
modCount

Constructor Summary
Vector()
 Constructs an empty vector so that its internal data array has size 10 and its standard capacity
increment is zero.
Vector(Collection<? extends E> c)
 Constructs a vector containing the elements of the specified collection, in the order they are
returned by the collection's iterator.
Vector(int initialCapacity)
 Constructs an empty vector with the specified initial capacity and with its capacity increment
equal to zero.
Vector(int initialCapacity, int capacityIncrement)
 Constructs an empty vector with the specified initial capacity and capacity increment.

Method Summary
 boolean add(E e)

 Appends the specified element to the end of this Vector.
 void add(int index, E element)

 Inserts the specified element at the specified position in this Vector.
 boolean addAll(Collection<? extends E> c)

 Appends all of the elements in the specified Collection to the end of this Vector,
in the order that they are returned by the specified Collection's Iterator.

 boolean addAll(int index, Collection<? extends E> c)
 Inserts all of the elements in the specified Collection into this Vector at the
specified position.

 void addElement(E obj)
 Adds the specified component to the end of this vector, increasing its size by
one.

 int capacity()
 Returns the current capacity of this vector.

3/4 Vector (Java Platform SE 6).pdf (3/4)2016-05-03 18:25:30

 void clear()
 Removes all of the elements from this Vector.

 Object clone()
 Returns a clone of this vector.

 boolean contains(Object o)
 Returns true if this vector contains the specified element.

 boolean containsAll(Collection<?> c)
 Returns true if this Vector contains all of the elements in the specified
Collection.

 void copyInto(Object[] anArray)
 Copies the components of this vector into the specified array.

 E elementAt(int index)
 Returns the component at the specified index.

 Enumeration<E> elements()
 Returns an enumeration of the components of this vector.

 void ensureCapacity(int minCapacity)
 Increases the capacity of this vector, if necessary, to ensure that it can hold at
least the number of components specified by the minimum capacity argument.

 boolean equals(Object o)
 Compares the specified Object with this Vector for equality.

 E firstElement()
 Returns the first component (the item at index 0) of this vector.

 E get(int index)
 Returns the element at the specified position in this Vector.

 int hashCode()
 Returns the hash code value for this Vector.

 int indexOf(Object o)
 Returns the index of the first occurrence of the specified element in this vector,
or -1 if this vector does not contain the element.

 int indexOf(Object o, int index)
 Returns the index of the first occurrence of the specified element in this vector,
searching forwards from index, or returns -1 if the element is not found.

 void insertElementAt(E obj, int index)
 Inserts the specified object as a component in this vector at the specified index.

 boolean isEmpty()
 Tests if this vector has no components.

 E lastElement()
 Returns the last component of the vector.

 int lastIndexOf(Object o)
 Returns the index of the last occurrence of the specified element in this vector,
or -1 if this vector does not contain the element.

 int lastIndexOf(Object o, int index)
 Returns the index of the last occurrence of the specified element in this vector,
searching backwards from index, or returns -1 if the element is not found.

 E remove(int index)

4/4 Vector (Java Platform SE 6).pdf (4/4)2016-05-03 18:25:30

 Removes the element at the specified position in this Vector.
 boolean remove(Object o)

 Removes the first occurrence of the specified element in this Vector If the
Vector does not contain the element, it is unchanged.

 boolean removeAll(Collection<?> c)
 Removes from this Vector all of its elements that are contained in the specified
Collection.

 void removeAllElements()
 Removes all components from this vector and sets its size to zero.

 boolean removeElement(Object obj)
 Removes the first (lowest-indexed) occurrence of the argument from this vector.

 void removeElementAt(int index)
 Deletes the component at the specified index.

protected void removeRange(int fromIndex, int toIndex)
 Removes from this List all of the elements whose index is between fromIndex,
inclusive and toIndex, exclusive.

 boolean retainAll(Collection<?> c)
 Retains only the elements in this Vector that are contained in the specified
Collection.

 E set(int index, E element)
 Replaces the element at the specified position in this Vector with the specified
element.

 void setElementAt(E obj, int index)
 Sets the component at the specified index of this vector to be the specified
object.

 void setSize(int newSize)
 Sets the size of this vector.

 int size()
 Returns the number of components in this vector.

 List<E> subList(int fromIndex, int toIndex)
 Returns a view of the portion of this List between fromIndex, inclusive, and
toIndex, exclusive.

 Object[] toArray()
 Returns an array containing all of the elements in this Vector in the correct
order.

<T> T[] toArray(T[] a)
 Returns an array containing all of the elements in this Vector in the correct
order; the runtime type of the returned array is that of the specified array.

 String toString()
 Returns a string representation of this Vector, containing the String
representation of each element.

 void trimToSize()
 Trims the capacity of this vector to be the vector's current size.

Methods inherited from class java.util.AbstractList

