Fondamenti: Alcune Proprietà di Calcolabilità e dei Linguaggi per Funzioni Calcolabili

Sommario: 17-18 marzo, 2021

- Funzioni Parziali ed Esecuzioni Terminanti di Programmi
- Problemi Semidecidibili: Halting, Equivalenza, Ambiguità
- Linguaggi per F: Lambda Calcolo (Church 1936)
- Logica Combinatoria (Shonfinkel 1924)
- Macchina a Stati (Minsky 1956, Wang 1957)
- Calcolo di Processi Mobili: π -Calcolo (Milner et al. 1992)

Letture e Approfondimenti:

- [Barendregt90] H.P. Barendregt, Functional Programming and Lambda Calculus, in Handbook of Theoretical Computer Science, vol. B, Chapter 7, pp. 321-363, Elsevier Science Publishers, 1990
- [Minski72] M. Minsky, Computation: Finite and Infinite Machines, Chapter 11, pp. 199-216, Prentice-Hall International, 1972.
- [Milner92] R. Milner, J. Parrow, D. Walker, A Calculus of Mobile Processes, Information and Computations 100, pp. 1-9, 41-49, 1992.

Funzioni Parziali e Decidibilità

- Funzione di Decisione È una funzione booleana, g, totale, ovvero:
 - ullet g $\in \mathcal{D}
 ightarrow \{\mathtt{true}, \mathtt{false}\}$ per due valori $\mathtt{true}, \mathtt{false} \in \mathcal{D}$
 - $\forall x \in \mathcal{D}, g(x) \in \{\text{true}, \text{false}\}\$
- Funzione di semi-Decisione È una funzione parziale g, ovvero:
 - ullet g $\in \mathcal{D}
 ightarrow \{ exttt{true} \}$ per $exttt{true} \in \mathcal{D}$
 - $\forall x \in \mathcal{D}, g(x) = \text{true oppure } g(x) = \uparrow^1$
- Decidibilità Le funzioni di decisione e semi-decisione, sono utilizzate per descrivere problemi calcolabili con caratteristiche diverse.

¹↑ significa *indefinito*: Ogni programma che esprime la funzione, calcolato su tale valore x è non terminante.

Decidibilità di alcuni, importanti problemi

- Ambiguità di un grammatica Libera. È semi-decidibile se ambigua, ovvero:
 - esiste semi-decisione g, s.t. g(x)=true sse x è ambigua
- Equivalenza di due grammatiche Libere. È semi-decidibile se diverse, ovvero:
 - ullet esiste semi-decisione g, s.t. g(x,y)=true sse $\mathcal{L}(x) \neq \mathcal{L}(y)$
 - Equivalenza di grammatiche regolari è decidibile
- Appartenenza a $\mathcal{L}(G)$ per Libera G È decidibile
 - esiste decisione $g_{\tt G}$, s.t. $g_{\tt G}(x) = \begin{cases} {\tt true} & x \in \mathcal{L}({\tt G}) \\ {\tt false} & x \notin \mathcal{L}({\tt G}) \end{cases}$
- Terminazione Esecuzione Programma p. È semi-decidibile se termina, ovvero:
 - esiste semi-decisione g, s.t. g(p,d)=true sse p termina su input d
- Equivalenza di Programmi. È non decidibile
 - eccetto che per programmi terminanti (vedi esercizio in Esercizi5L5)

Calcolo di Funzioni: Lambda Calcolo (Church 1936)

• Sintassi (ovviamente, astratta)

$$\Lambda = X \mid \Pi \mid \lambda X.\Lambda \mid \Lambda\Lambda$$

- **Termini**: Λ, g, t, t_i . Insieme (numerabile) dei termini.
- Variabili: X, x, y, z. Insieme (numerabile) di simboli detti variabili.
- Costanti: $\Pi, c...$. Insieme (numerabile) di simboli detti costanti (distinguibili: $X \cap \Pi = \{\}$)
- **Op. Astrazione:** λx.t. Operazione binaria che esprime il valore (funzionale) ottenuto da t per *astrazione* (generalizzazione) rispetto alla variabile (libera) x. Il termine è anche detto, funzione di t nella variabile x.
- Op. Applicazione: t₁t₂. Operazione binaria che esprime il valore ottenuto per applicazione del termine t₁ al termine t₂.
 Il termine è anche detto, applicazione di t₁ a t₂. Ha notazione implicita via giustapposizione degli argomenti.
- Esempi

```
 \begin{array}{ll} [@-([x],[y])] \\ [\lambda-([x],[\lambda-([y],[@-([x],[y])])]) & (grafica\_migliora\_la\_lettura!) \\ & & & & & & & & & & & & & & & & \\ \end{array}
```

λ -Calcolo: Sintassi Concreta - Convenzioni e Definizioni

$$\mathbf{\Lambda} = \mathbf{X} \mid \mathbf{\Pi} \mid \lambda \, \mathbf{X} \, . \, \mathbf{\Lambda} \mid \mathbf{\Lambda} \mathbf{\Lambda}$$

Sintassi Concreta e Variabili Libere

- Applicazione. è associativa a sinistra:
 x y x significa ((x y)x)
- **Applicazione.** ha priorità sull'Astrazione: $\lambda v.x y$ significa $\lambda v.(x y)$
- Variabile Legata, Libera, Occorrenze. Le variabili che occorrono in un termine t sono raccolte in Var(t), e si dividono Legate, BV(t), o Libere, FV(t), a seconda che siano state astratte o meno.

$\mathtt{t} \in \mathtt{\Lambda}$	BV(t)	FV(t)
$\mathtt{x} \in \mathtt{X}$	{}	{x}
$c\in\Pi$	{}	{}
$\lambda \mathtt{x.t_1}$	$\{\mathtt{x}\}\cup \mathtt{BV}(\mathtt{t}_1)$	$FV(t_1) \setminus \{x\}$
t_1t_2	$\mathtt{BV}(\mathtt{t}_1) \cup \mathtt{BV}(\mathtt{t}_2)$	$\mathtt{FV}(\mathtt{t}_1) \cup \mathtt{FV}(\mathtt{t}_2)$
extstyle ext		

Esempi

Sia $t \equiv \lambda y. \lambda x. y(y(yx))$. Possiamo omettere le parentesi?

Sia $t \equiv \lambda y.\lambda x.xz$. Abbiamo: $Var(t)=\{x,y,z\}$, $FV(t)=\{z\}$, $BV(t)=\{x,y\}$.

Sia $t \equiv \lambda y \cdot \lambda x \cdot (\lambda x \cdot x + 5)(x + y)$. Abbiamo: ...

Lambda Calcolo: Semantica

$$\Lambda = X \mid \Pi \mid \lambda X.\Lambda \mid \Lambda\Lambda$$

Semantica

- Una relazione → definita da 3 regole ed estesa in una congruenza su Λ.
- $\circ \alpha$ red.

$$\lambda x.t \rightarrow_{\alpha} \lambda y.t[y/x]$$
 per $y \notin Var(t)$

• β – red.

$$(\lambda x.t)t_2 \rightarrow_{\beta} t[t_2/x] \quad \text{per } FV(t_2) \cap BV(t) = \{\}$$

• η - red.

$$\lambda x.(t x) \rightarrow_{\eta} t \quad \text{per } x \notin FV(t)$$

• Sostituzione. $t_1[t_2/x]$ è l'operazione che rimpiazza, in t_1 , ogni occorrenza libera di x con il termine t2.

$$\begin{split} x[t/x] &= t \\ y[t/x] &= y \text{ con } x \neq y; \qquad c[t/x] = c \\ (\lambda x . t)[t_2/x] &= \lambda x . t; \qquad (\lambda y . t)[t_2/x] = \lambda y . (t[t_2/x]) \text{ con } x \neq y \\ (t_1t_2)[t_3/x] &= (t_1[t_3/x])(t_2[t_3/x]) \end{split}$$

Esempi

Sia $t \equiv \lambda y. \lambda x. y(y(yx))$. Quali regole sono applicabili a t?

Lambda Calcolo: Valutazione, Computazione

$$\Lambda = X \mid \Pi \mid \lambda X.\Lambda \mid \Lambda\Lambda$$

- Valutazione, Computazione di $t \in \Lambda$
 - Una sequenza:

$$t_0 \to_{r_1} t_1 \ \dots \ \to_{r_n} t_n$$

tale che:

- $(t \equiv t_0) \land (n \geq 0)$
- annotazioni $r_i \in \{\alpha, \beta, \eta\}$
- $t_n \rightarrow_{r_{n+1}} t_{n+1}$ solo se $r_{n+1} \equiv \alpha$
- Esempi

Sia $t \equiv \lambda x.(\lambda y.xy)(\lambda x.yx)$. Vediamo una valutazione di t:

$$\mathsf{t} \to_\eta \lambda \mathsf{x}.\mathsf{x}(\lambda \mathsf{x}.\mathsf{y}\,\mathsf{x}) \to_\eta \lambda \mathsf{x}.\mathsf{x}\mathsf{y}$$

Non è unica:

$$\mathsf{t} \to_{\beta} \lambda \mathsf{x}.\mathsf{x}(\lambda \mathsf{x}.\mathsf{y}\,\mathsf{x}) \to_{\eta} \lambda \mathsf{x}.\mathsf{x}\mathsf{y}$$

Lambda Calcolo: Programmare

$$\Lambda = X \mid \Pi \mid \lambda X.\Lambda \mid \Lambda\Lambda$$

• Programmi Sono tutti i termini chiusi, i.e.

$$\mathcal{P} = \{ \mathtt{t} \in \mathtt{\Lambda} \mid \mathtt{FV}(\mathtt{t}) = \{ \} \}$$

- Aritmetica
 - $[0] \equiv \lambda y.\lambda x.x$
 - $[n+1] \equiv \lambda y.\lambda x.y([n]yx)$
 - $succ \equiv \lambda z.\lambda y.\lambda x.y(zyx)$
 - $\bullet \ \mathtt{plus}, \mathtt{prod}, \mathtt{minus}, \mathtt{div}, \dots$
- Conditional e booleani
 - if $\equiv \lambda b.\lambda x.\lambda y.bxy$
 - true $\equiv \lambda \, x. \lambda \, y. x$
 - false $\equiv \lambda \, x. \lambda \, y. y$
 - \bullet zerop, and, or, eq, ...
- Recursion-FixedPoint
 - $\Psi \equiv \lambda g.(\lambda x.g(xx))(\lambda x.g(xx))$

Lambda Calcolo: Programmare /2

$$\Lambda = X \mid \Pi \mid \lambda X.\Lambda \mid \Lambda\Lambda$$

- Aritmetica
- Programmi
- Conditional e costanti booleane
- Recursion-FixedPoint
 - $\Psi \equiv \lambda \, g.(\lambda \, x.g(xx))(\lambda \, x.g(xx))$
 - $\bullet \ \, \forall h \in \mathcal{F}, \forall d \in \mathcal{D}\text{,}$

$$\Psi(h)(d) = h(\Psi(h))(d)$$
 (vedi esercizio L5.7)

• Sia $g = \lambda x.t$ una definizione per una funzione g^2 : $g \equiv \Psi(\lambda g.\lambda x.t)$

```
fact = \lambda x.if (eq x [0]) [1] (prod x (fact (minus x [1])))
è una sintassi concreta per il termine
\Psi(\lambda \text{ fact.} \lambda \text{ x.if (eq x [0]) [1] (prod x (fact (minus x [1]))))}
```

Lambda Calcolo: Esercizio

Recursion-FixedPoint

```
• \Psi \equiv \lambda g.(\lambda x.g(xx))(\lambda x.g(xx))

• \forall h \in \mathcal{F}, \forall d \in \mathcal{D},

• \Psi(h)(d) = h(\Psi(h))(d) (vedi esercizio L5.7)
```

$$\begin{array}{l} {\rm fact} = \lambda \, {\rm x.if} \, \left({\rm eq} \, {\rm x} \, [0] \right) \left[1 \right] \, \left({\rm prod} \, {\rm x} \, \left({\rm fact} \, \left({\rm minus} \, {\rm x} \, [1] \right) \right) \right) \\ {\rm \grave{e}} \, {\rm una} \, {\rm sintassi} \, {\rm concreta} \, {\rm per} \, {\rm il} \, {\rm termine} \\ \Psi \left(\lambda \, {\rm fact} . \lambda \, {\rm x.if} \, \left({\rm eq} \, {\rm x} \, [0] \right) \, [1] \, \left({\rm prod} \, {\rm x} \, \left({\rm fact} \, \left({\rm minus} \, {\rm x} \, [1] \right) \right) \right) \\ \end{array}$$

Calcoliamo: fact[0] ovvero:
$$\Psi(h)[0]$$
, dove $h \equiv \lambda \operatorname{fact}.\lambda \operatorname{x.if}..$
 $\Psi(h)[0] = h(\Psi(h))[0] \rightarrow_{\beta} (\lambda \operatorname{x.if}...)[0] \rightarrow_{\beta}$
 $\rightarrow_{\beta} \text{ if (eq [0] [0]) [1] (prod } \operatorname{x} ((\Psi(h)) (minus \operatorname{x} [1])))$
 $\rightarrow_{\beta} ... \rightarrow_{\beta} [1]$ (vedi. esercizio L5.10)

Esercizi L6

- (a) Si fornisca una grammatica per la sintassi astratta del λ-Calcolo in accordo alla notazione utilizzata nell'albero astratto [λ - ([x], [λ - ([y], [@ - ([x], [y])])]).
 (b) Si mostri poi, che tale albero è ottenuto dalla grammatica data.
- ② (a) Si fornisca una grammatica per la sintassi concreta del λ -Calcolo in accordo alle proprietà date per associatività e precedenza tra operatori. (b) Si mostri poi, la sintassi concreta dell'albero astratto $[\lambda ([x], [\lambda ([y], [@ ([x], [y])])])$. (c) Si mostri, infine il parse tree del termine ottenuto al punto (b) precedente.
- 3 Si completino i calcoli indicati con '...' nelle slides precedenti.
- ① Si mostri la sequenza di α -red applicate per ridurre il termine dato sotto, ad un termine contenente sempre, identificatori diversi per variabili diverse: $\lambda x.\lambda y.(\lambda x.y(\lambda y.x)x)(\lambda y.x(\lambda x.yx)y)$
- (a) Si mostri la valutazione di $\lambda x.\lambda y.(\lambda x.y(\lambda y.x)x)(\lambda y.x(\lambda x.yx)y)$. (b) Nell'ipotesi di aver usato α —red nella valutazione fornita se ne giustifichi l'uso.
- **6** Si mostri la valutazione di $(\lambda x.(\lambda y.\lambda x.xy)(\lambda y.yx))y$
- O Si dimostri che: $\forall F$, $\Psi F = F(\Psi F)$
- (a) Si scriva, in Lambda-Calcolo, un programma per la funzione plus introdotta nell'aritmetica data per tale linguaggio. (b) Si mostri la computazione di plus[2][1]
- Si scriva, in Lambda-Calcolo, un programma per la funzione zerop che calcola true quando applicata a [0], false altrimenti. (b) Si mostri la computazione di zerop[2].

Altri esercizi in: EserciziL5

Calcolo di Funzioni: Logica Combinatoria (Schonfinkel 1924)

Sintassi (ovviamente, astratta)

$$\mathcal{C} = \mathbf{X} \mid \mathbf{\Pi} \mid \mathbf{S} \mid \mathbf{K} \mid \mathbf{I} \mid \mathcal{C}\mathcal{C}$$

- **Termini:** C, r, r_i . Insieme (numerabile) dei termini.
- Variabili: X, x, y, z. Insieme (numerabile) di simboli detti variabili libere.
- Costanti: $\Pi, c...$. Insieme (numerabile) di simboli detti costanti (distinguibili: $X \cap \Pi = \{\}$)
- S, K, I Sono tre identificatori , i.e. S, K, I ∈ Π, detti combinatori fondamentali
- op. Applicazione. r₁r₂ termine ottenuto per applicazione del termine r₁ al termine r₂. Il termine è anche detto, applicazione di r₁ a r₂.

```
S(Kx)I

S(S(KS)(S(KK)I))(KI)
```


Logica Combinatoria: Convenzioni e Definizioni Sintattiche

$$C = X \mid \Pi \mid S \mid K \mid I \mid CC$$

- Sintassi Concreta e Variabili Libere
 - **op. Applicazione.** è associativa a sinistra: x y x significa ((x y)x)
 - Variabile Libera. Le variabili che occorrono in un termine sono tutte libere.

```
S(Kx)I
S(S(K+)I)(K5)
```

Logica Combinatoria: Semantica

$$\mathcal{C} = X \mid \Pi \mid S \mid K \mid I \mid \mathcal{CC}$$

Semantica

- Una relazione \to definita da 1 regola per combinatore ed estesa in una congruenza su $\mathcal{C}_{\cdot\cdot}$
 - $\bullet \ \mathtt{S} \ \mathtt{r}_1 \ \mathtt{r}_2 \ \mathtt{r} \to \mathtt{r}_1 \ \mathtt{r} \ (\mathtt{r}_2 \ \mathtt{r})$
 - K r_1 $r_2 \rightarrow r_1$
 - $\bullet \ \ \texttt{I} \ \texttt{r} \to \texttt{r}$

```
\begin{array}{l} \mathtt{S}(\mathtt{Kx}) \mathtt{I} \, \mathtt{3} \to \dots \\ \mathtt{S}(\mathtt{S}(\mathtt{K+}) \mathtt{I}) (\mathtt{K} \, \mathtt{5}) \mathtt{7} \to \dots \\ \mathtt{S}(\mathtt{S}(\mathtt{KS}) (\mathtt{S}(\mathtt{KK}) \mathtt{I})) (\mathtt{KI}) \mathtt{3} \, \mathtt{5} \to \dots \end{array}
```

Logica Combinatoria: Astrazione/1

$$\mathcal{C} = X \mid \Pi \mid S \mid K \mid I \mid \mathcal{CC}$$

• Sia $\mathcal U$ un generico calcolo con termini F per esprimere funzioni e valori, variabili X per e. parametri 3 , applicazione di termini per e. l'applicazione di funzione. 4

Definition (Astratto, Proprietà di Astrazione)

L'astratto di un termine $u \in F$, rispetto ad una variabile $x \in X$, è un termine che indichiamo con $\{x\}u$ avente la seguente proprietà di astrazione:

$$\forall w \in F, \quad (\{x\}u)w = u[w/x]$$

 $\mathsf{dove}\ (\{x\}u)\mathtt{w}\ \grave{\mathsf{e}}\ \mathsf{l'applicazione}\ \mathsf{di}\ \{x\}u\ \mathsf{a}\ \mathtt{w},\ u\left[\mathtt{w}/\mathtt{x}\right]\ \grave{\mathsf{e}}\ \mathsf{la}\ \mathsf{sostituzione},\ \mathsf{in}\ u,\ \mathsf{di}\ x\ \mathsf{con}\ \mathtt{w}.$

- Nel Lambda-Calcolo, {x}u è il termine λ x.u e fa parte di una classe speciale di termini.
- ullet non ha una classe speciale di termini.

Proposition (Astratto in C)

 $\mathcal C$ esprime l'astratto mediante una composizione di applicazioni dei suoi termini, ovvero: $\forall \mathbf r \in \mathcal C, \forall \mathbf x \in \mathbf X, \{\mathbf x\}\mathbf r \in \mathcal C$

 $^{^{3}}$ si assuma per semplicità, che variabili diverse abbiano sempre nomi diversi in uno stesso termine

⁴il calcolo può contenere ulteriori operazioni e strutture
Marco Bellia, Dip, Informatica, Università di Pisa

Logica Combinatoria: Astrazione/2

$$\mathcal{C} = X \mid \Pi \mid S \mid K \mid I \mid \mathcal{CC}$$

Proposition (Astratto in C)

 \mathcal{C} esprime l'astratto mediante una composizione di applicazioni dei suoi termini, ovvero: $\forall \mathtt{r} \in \mathcal{C}, \forall \mathtt{x} \in \mathtt{X}, \{\mathtt{x}\}\mathtt{r} \in \mathcal{C}$

- **Astrazione.** Dato un qualunque termine r e una qualunque variabile x, mostriamo un metodo 5 per ottenere $\{x\}r \in \mathcal{C}$.

 - $\{x\}r = K r se x \notin Var(r)$
 - $\{x\}(r_1 r_2) = S(\{x\}r_1)(\{x\}r_2)$
- Esempi

$${x}({y}x) = ...$$

Si noti che $\{x\}x$ può essere espresso con termini equivalenti ma diversi, pertanto esistono altri metodi per calcolare per l'astratto in \mathcal{C}

Logica Combinatoria: Programmare con liste

$$C = X \mid \Pi \mid S \mid K \mid I \mid CC$$

• **Programmi** Sono tutti i termini chiusi, i.e. senza variabili $\mathcal{P} = \{ \mathbf{r} \in \mathcal{C} \mid Var(\mathbf{r}) = \{ \} \}$

Conditional e booleani

- if $\equiv \{b\}(\{x\}(\{y\}bxy))$
- true $\equiv S(KK)I$
- false = KT
- and, or, eq, ...

Coppie e liste

- pair $\equiv \{x\}(\{y\}(\{s\}sxy))$
- first $r \equiv r$ true
- $\operatorname{snd} r \equiv r \operatorname{false}$

Logica Combinatoria: Programmare con Aritmetica

$$C = X \mid \Pi \mid S \mid K \mid I \mid CC$$

- Programmi Sono tutti i termini chiusi, i.e. senza variabili.
- Conditional e booleani
- Coppie e liste
- Aritmetica
 - $[0] \equiv pair true false$
 - $[n+1] \equiv pair false [n]$
 - $\bullet \ \, \text{zerop} \,\, r \equiv r \,\, \text{true}$
 - succ, plus, prod, minus, div
- Recursion-FixedPoint
 - Ψ ≡ ...

Logica Combinatoria: Conclusioni (per ora)

$$C = X \mid \Pi \mid S \mid K \mid I \mid CC$$

- Programmi Sono tutti i termini chiusi, i.e. senza variabili
- Aritmetica e Liste
- Conditional e booleani
- Recursion-FixedPoint
- Un monoide con applicazione come unica operazione
- Il più compatto formalismo di calcolo
- Il più compatto linguaggio di programmazione
 - esecutore semplice da realizzare (no sostituzione)
 - valori e operazioni espressi nel linguaggio (inclusa ricorsione) possono essere realizzati come primitive della sua Macchina Astratta
- Espressività: In grado di esprimere i meccanismi (valori, condizionali, ricorsione,..) di uso comune in programmazione.

Macchina a Stato (Minsky 1956, Wang 1957)

• Sintassi (ovviamente, astratta)

$$\mathcal{Z} = exttt{Zero R} \mid exttt{Inc R} \mid exttt{DJO R N} \mid exttt{Halt}$$

- **Termini:** \mathcal{Z} Insieme (numerabile) degli Statements, z, z_i .
 - Azzeramento registro R;
 - Incremento registro R;
 - Decremento o salto a N se R contiene 0;
 - Arresto esecuzione;
- Registri: R_i. Insieme finito di Registri a capacità infinita.
- N: interi nonegativi
- Programmi, \mathcal{P} :
 - Ogni sequenza finita di Z;
 - Ogni statement accessibile attraverso la propria posizione nella sequenza

Esempi

Zero R_0 ; Halt Zero R_0 ; DJO R_1 4; Inc R_2 ; DJO R_0 1; Halt

Macchina a Stato: Semantica

$$\mathcal{Z} = exttt{Zero R} \mid exttt{Inc R} \mid exttt{DJO RN} \mid exttt{Halt}$$

- Semantica SOS
 - Definizione di stato
 - Registri (variabili con nomi predefiniti) rappresentati da una sequenza di coppie, ρ, della forma: (R₀, n₀)...(R_k, n_k)
 - Program Counter: Posizione PC del successivo statement da eseguire (inizialmente 0).
 - Uno stato è rappresentato da una coppia $\{PC, \rho\}$
 - Definizione di Transizione →
 - ullet Esecuzione di Statement z nello stato σ della macchina
 - $\langle z, \sigma \rangle \rightarrow \sigma'$, indicante ...
 - $\langle \mathbf{z}, \sigma \rangle \rightarrow \langle \mathbf{z}', \sigma' \rangle$, indicante ...

Macchina a Stato: Computazione

$$\mathcal{Z} = \texttt{Zero} \; \texttt{R} \; | \; \texttt{Inc} \; \texttt{R} \; | \; \texttt{DJO} \; \texttt{R} \; \texttt{N} \; | \; \texttt{Halt}$$

- Semantica SOS
 - Definizione di stato
 - Definizione di Transizione
 - Definizione di **Computazione** di un programma di $p \in \mathcal{P}$:
 - sequenza componente registro degli stati attraversati nell'esecuzione di p.

$$\langle \mathtt{z}, \{\mathtt{n}, \rho\} \rangle \to \langle \mathtt{z}_1, \{\mathtt{n}_1, \rho_1\} \rangle \to \langle \mathtt{z}_2, \{\mathtt{n}_2, \rho_2\} \rangle \to \dots$$

• La semantica di un programma è la sua computazione:

$$Sem(p) \equiv \rho, \rho_1, \rho_2, ...,$$

- Notazione
 - $\{n, (R_1, n_1), \cdots, (R_k, n_k)\}$ stato con $PC \equiv n \in k$ registri
 - ρ , τ (anche con pedici) sono componente registro dello stato
 - $\bullet \ \rho(R_1) = 0 \ \text{quando} \ \rho = (R_1, n_1), \cdots, (R_1, 0), \cdots, (R_k, n_k),$
 - $\bullet \rho(R_i) \neq 0$ quando $\rho = (R_1, n_1), \cdots, (R_i, n_i \neq 0), \cdots, (R_k, n_k),$
 - $\rho[R_i \leftarrow 0] = (R_1, n_1), \cdots, (R_i, 0), \cdots, (R_k, n_k)$
 - $\bullet \rho[R_i \leftarrow R_i + 1] = (R_1, n_1), \cdots, (R_i, n_i + 1), \cdots, (R_k, n_k)$ quando $\rho = (R_1, n_1), \dots, (R_i, n_i), \dots, (R_k, n_k)$
 - P[n] n-esimo statement del programma P
 - #P numero di statements del programma (posizionati da 0 a #P−1)

 #P numero di statements del programma (posizionati da 0 a #P−1)

 # □ P # □ P # □ P # □ P # □ P # □ P # □ P # □ P # □ P # □ P # □ P # □ P # □ P

Macchina a Stato: Transizioni

$$\mathcal{Z} = exttt{Zero R} \mid exttt{Inc R} \mid exttt{DJO R N} \mid exttt{Halt}$$

$$\begin{split} \langle \text{Halt}, \{n, \rho\} \rangle &\to \{n, \rho\} \\ &\frac{0 \leq n < \#P, \quad z_n = P[n]}{\langle \text{Zero R}_i, \{n, \rho\} \rangle &\to \langle z_n, \{n+1, \rho[R_i \leftarrow 0]\} \rangle} \\ &\frac{0 \leq n < \#P, \quad z_n = P[n]}{\langle \text{Inc R}_i, \{n, \rho\} \rangle &\to \langle z_n, \{n+1, \rho[R_i \leftarrow R_i + 1]\} \rangle} \\ &\frac{0 \leq m < \#P, \quad z_m = P[m], \quad \rho(R_i) = 0}{\langle \text{DJO R}_i, m, \{n, \rho\} \rangle &\to \langle z_n, \{n+1, \rho\} \rangle} &\frac{0 \leq n < \#P, \quad z_n = P[n], \quad \rho(R_i) \neq 0}{\langle \text{DJO R}_i, m, \{n, \rho\} \rangle &\to \langle z_n, \{n+1, \rho[R_i \leftarrow R_i - 1]\} \rangle} \end{split}$$

Esercizi

- ① Si mostri la computazione di $\langle P, \{0, \rho_0\} \rangle$, dove $\rho_0 \equiv \{0, (R_0, 5), (R_1, 3), (R_2, 4)\}$ $P \equiv \text{Zero } R_0; \text{DJO } R_1 \text{ 4}; \text{Inc } R_2; \text{DJO } R_0 \text{ 1}; \text{Halt. Si assuma il primo statement di } P$ alla posizione 0.
- ② Si mostri la computazione del programma P sopra, nello stato $\{0, \rho\}$, dove ρ_0 sia un'arbitraria configurazione dei registri R_0, R_1, R_2 .
- ③ Si scriva un programma che calcolato in uno stato iniziale arbitrario ρ_0 termini avendo copiato nel registro R_1 il contenuto del registro R_2 .
- ① Lo stesso esercizio precedente salvo che nello stato finale ρ_k deve valere: $\rho_k(R_1) = \rho_0(R_1) = \rho_k(R_2)$.
- **3** Si scriva un programma che calcolato in uno stato iniziale ρ_0 termini scrivendo 0 nel registro R_0 se $\rho_0(R_1) \neq \rho_0(R_2)$. Il programma termina scrivendo 1, in caso contrario.
- Si mostri la computazione del programma P sotto, nello stato {0, ρ₀}, dove ρ₀ sia un arbitraria configurazione dei registri R₀, R₁, R₂.
 P ≡ Zero R₀: Inc R₁: DJO R₀ 1: Halt.
- ② Si scriva un programma che calcolato in uno stato iniziale ρ_0 termini in uno stato $\rho_{\tt K}$ tale che $\rho_{\tt K}(R_2) = \rho_0(R_2) \rho_0(R_1)$.
- Ocsa implica l'assunzione che i registri della Macchina a Stato sebbene in numero finito abbiano capacità illimitata?

Altri esercizi in: EserciziL5

Calcolo di Processi, Distribuito, Concorrente, Mobile - 1

Calcolo di Processi, Distribuito

Definisce grafi con nodi come processi (= agenti = produttori di azioni) che comunicano esclusivamente attraverso canali rappresentati come archi.

Le azioni possono: 1) comunicare (segnali, valori, ...); 2) avere effetti laterali (i.e. modificare lo stato [memoria condivisa e/o privata, sensori, attuatori,..]); 3) produrre nuovi processi (figli), nuovi canali (per questi), riconfigurare canali di comunicazione, generando raffinamenti ed anche nuove strutture di grafo.

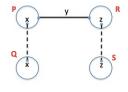


Fig. 5.1 Un sistema con 4 processi, 1 canale pubblico, con nome y, 2 canali privati, di nome x e z, per la comunicazione protetta tra P e Q, e R ed S rispettivamente.

... Concorrente

Processi *autonomi* che sono in esecuzione nello stesso istante. producendo azioni *atomiche/non-atomiche, sincrone/asincrone*

Calcolo di Processi, Distribuito, Concorrente, Mobile - 2

... Mobile

I Processi comunicano attraverso canali che possono essere riconfigurati dinamicamente, attraverso opportune comunicazioni tra i processi interessati.

1) nuovi canali possono affiancarsi a e/o sostituire vecchi; e sopratutto, 2) vecchi canali possono essere ri-utilizzati per nuove comunicazioni con differenti e/o nuovi processi.

Fig. 5.2 Se il sistema permette mobilità allora il nome x del canale che a sinistra è privato (per comunicazione protetta tra $P \in Q$) può essere comunicato ad S, conducendo al sistema a destra. Il nuovo sistema permette di avviare comunicazione protetta tra P, Q ed S

Modelli di Calcolo di Processi, Distribuito, Concorrente, Mobile

Modelli di Calcolo di Processi,...

Sono formalismi (eseguibili o no) per definire il comportamento di un sistema (*calcolabile*) di processi allo scopo di:

- 1) Studiarne e Provare proprietà
 - (*Protocollo di comunicazione* = come avviene la comunicazione, regole; Sistema di Processi = cosa calcola il sistema, quali valori si scambiano)
- Progettare linguaggi per programmare tali sistemi (rendendoli eseguibili ovvero attivi, concreti, effettivi, utilizzabili,...)

Esempi di Uso

- Quesito1. Fornire una definizione del sistema mostrato in Fig.5.1;
- Quesito2. In accordo alla definizione data in (risposta al) Q.1, si può affermare che il sistema è stato ottenuto come evoluzione di un sistema formato inizialmente da un solo processo?
- Quesito 3. Fornire una definizione di un sistema che evolve in un sistema come quello mostrato in Fig.5.2;
- Quesito 4. Studiare la terminazione del sistema fornito in risposta al Q.1;

Calcolo di Processi, Distribuito, Concorrente, Mobile: π -Calcolo (Milner 1992)

- Sintassi (ovviamente, astratta) $\pi = \pi + \pi \mid \pi \parallel \pi \mid (\mathbf{X})\pi \mid \alpha.\pi \mid \mathbf{0} \mid [\mathbf{X} = \mathbf{X}]\pi \mid \mathbf{A}(\overrightarrow{\mathbf{X}})$ $\alpha = \overline{\mathbf{X}} \, \mathbf{X} \mid \mathbf{X} \, (\mathbf{X}) \mid \tau$
 - Processi/Agenti: π, P, Q, P_i, Q_i. Insieme (numerabile) delle espressioni per sistemi di processi.
 - **Nomi:** X, x, y, x_i, y_i, Insieme (numerabile) di identificatori per canali di comunicazione e/o dei valori atomici comunicati.
 - Prefissi: α. Espressionį di comunicazione.
 - Agente Definito. $A(\overrightarrow{X})$, dove $\overrightarrow{X} \equiv x_1,...,x_n$, con $x_i \in X$ ed $n \geq 0$, ed un'unica (anche ricorsiva) equazione della forma $A(y_1,...,y_n) \stackrel{\text{def}}{=} P$ sia data per il simbolo ausiliario $A \notin X$.
 - **Programmi:** Ogni espressione π *chiusa*.

```
in(c).c(n).c(n).c(r).\overline{r} n.0 -- espressione \pi non chiusa (c)in(c).c(n).c(m).c(r).\overline{r} m.0 -- un programma
```


π -Calcolo: Costrutti - Survey

$$\begin{split} \pi &= \pi + \pi \mid \pi \mid \pi \mid (\mathbf{X})\pi \mid \alpha.\pi \mid \mathbf{0} \mid [\mathbf{X} = \mathbf{X}]\pi \mid \mathbf{A}(\overrightarrow{\mathbf{X}}) \\ \alpha &= \overline{\mathbf{X}} \; \mathbf{X} \mid \mathbf{X}(\mathbf{X}) \mid \tau \end{split}$$

- **Sum:** $P_1 + P_2$. Processo nondeterministico.
- **Composition:** $P_1 \parallel P_2$. Sistema di processi in *parallelo*.
- Restriction: (x)P. Nome x è dichiarato locale in P.
- **Prefix Form:** α .P. Comunicazione con l'esterno.
- Inaction: 0. Processo neutro.
- Match: [x = y]P. Processo condizionato.
- **Defined:** $A(x_1,...,x_n)$. Uso di definizione ausiliaria.

```
\begin{array}{ll} \mathtt{fst}(\mathtt{in}) \stackrel{\mathrm{def}}{=} \mathtt{in}(\mathtt{c}).\mathtt{c}(\mathtt{n}).\mathtt{c}(\mathtt{m}).\mathtt{c}(\mathtt{r}).\overline{\mathtt{r}}\,\mathtt{n.0} & \text{-- una definizione ausiliaria} \\ (\mathtt{c})(\mathtt{fst}(\mathtt{c}) \parallel \mathtt{snd}(\mathtt{c}) \parallel \mathtt{P}(\mathtt{c})) & \text{-- un programma (sopra le sue ausiliarie)} \\ \mathtt{x}(\mathtt{c}).(\mathtt{fst}(\mathtt{c}) \parallel \mathtt{snd}(\mathtt{c}) \parallel \mathtt{P}(\mathtt{c})).0 & \text{-- un sistema di processi che forma un processo} \end{array}
```

π -Calcolo: Sintassi Concreta - Convenzioni

$$\pi = \pi + \pi \mid \pi \mid \pi \mid (\mathbf{X})\pi \mid \alpha.\pi \mid \mathbf{0} \mid [\mathbf{X} = \mathbf{X}]\pi \mid \mathbf{A}(\overrightarrow{\mathbf{X}})$$

$$\alpha = \overline{\mathbf{X}} \mathbf{X} \mid \mathbf{X}(\mathbf{X}) \mid \tau$$

- Sintassi Concreta: Convenzioni
 - Sum, Composition: associatività left/right, e commutatività. $P_1 + ... + P_n$ sta per ogni permutazione e raggruppamento dei suoi termini
 - Precedenza. tra operatori:

$$\left. \begin{array}{c} \textit{Restriction} \\ \textit{Prefix} \\ \textit{Match} \end{array} \right\} > \mathsf{Composition} > \mathsf{Sum}$$

• Parameter Grouping $(\overrightarrow{X})P, \overline{X}\overrightarrow{X}, X(\overrightarrow{X})$

- $P_1 + P_2 + P_3 + P_4 \parallel Q$ equivale $P_2 + (P_4 \parallel Q) + P_3 + P_2$ equivale ...
- $(p)(u) \overline{\circ} u p.P \| Q + R$ equivale $(((p,u) \overline{\circ} u p.P) \| Q) + R$ equivale...

π -Calcolo: Nomi free, bound ed Espressioni chiuse/ 1

$$\begin{split} \pi &= \pi + \pi \mid \pi \mid \pi \mid (\mathbf{X})\pi \mid \alpha.\pi \mid \mathbf{0} \mid [\mathbf{X} = \mathbf{X}]\pi \mid \mathbf{A}(\overrightarrow{\mathbf{X}}) \mid \alpha \star \pi \\ \alpha &= \overline{\mathbf{X}} \; \mathbf{X} \mid \mathbf{X} \; (\mathbf{X}) \mid \tau \end{split}$$

- Nomi: n(Q). I nomi che occorrono in un termine $P \in \pi$ sono raccolti in $n(P) = bn(p) \cup fn(P)$, e si dividono in nomi Legati, bn(P), e nomi Liberi, fn(P). Esempio: Sia $U \equiv \overline{x}y.(z)(\overline{x}z.P + y(w).Q)$. $n(U) = \{x, y, z, w\} \cup n(P) \cup n(Q)$.
- Nomi Legati: bn(Q). Introdotti dal binder (y): y ∈ bn(x(y).P), y ∈ bn((y).P). P è lo scope di (y): Ogni occorrenza libera di y in P diventa legata all'occorrenza y nel binder.

```
Esempio: Sia U \equiv \overline{x}y.(z)(\overline{x}z.P + y(w).Q).

bn(U) = \{z, w\} \cup bn(P) \cup bn(Q).
```

π -Calcolo: Nomi free, bound ed Espressioni chiuse/ 2

$$\begin{array}{l} \pi = \pi + \pi \mid \pi \mid \pi \mid (\mathtt{X})\pi \mid \alpha.\pi \mid \mathtt{0} \mid [\mathtt{X} = \mathtt{X}]\pi \mid \mathtt{A}(\overrightarrow{\mathtt{X}}) \mid \alpha \star \pi \\ \alpha = \overline{\mathtt{X}} \, \mathtt{X} \mid \mathtt{X} \, (\mathtt{X}) \mid \tau \end{array}$$

- Nomi: n(Q).
- Nomi Legati: bn(Q).
- Nomi Liberi: fn(Q). Tutti i nomi in Q che non sono nello scope di un binder con tale nome.

Esempio: Sia
$$\mathtt{U} \equiv \overline{\mathtt{x}}\mathtt{y}.(\mathtt{z})(\overline{\mathtt{x}}\mathtt{z}.\mathtt{P} + \mathtt{y}(\mathtt{w}).\mathtt{Q}).$$

$$\mathtt{fn}(\mathtt{U}) = \{\mathtt{x},\mathtt{y}\} \cup (\mathtt{fn}(\mathtt{P}) \setminus \{\mathtt{z}\}) \cup (\mathtt{fn}(\mathtt{Q}) \setminus \{\mathtt{z},\mathtt{w}\}).$$

 Occorrenze. Un identificatore legato più volte può condurre ad occorrenze indicanti differenti nomi legati.

Esempio: Sia $U \equiv \overline{x}y.(z)(\overline{x}z.P + y(z).Q)$.

Le occorrenze di z libere in $\mathbb Q$ e quelle libere in $\mathbb P$ sono nello scope di differenti binder in $\mathbb U$ e sono quindi nomi differenti.

π -Calcolo: Definizioni di n(Q), bn(Q), fn(Q)

$$\begin{aligned} \pi &= \pi + \pi \mid \pi \mid \pi \mid (\mathtt{X})\pi \mid \alpha.\pi \mid \mathtt{0} \mid [\mathtt{X} = \mathtt{X}]\pi \mid \mathtt{A}(\overrightarrow{\mathtt{X}}) \\ \alpha &= \overline{\mathtt{X}}\,\mathtt{X} \mid \mathtt{X}\,(\mathtt{X}) \mid \tau \end{aligned}$$

$Q \in \pi$	bn(Q)	fn(Q)	
$P_1 + P_2$	$bn(P_1) \cup bn(P_2)$	$fn(P_1) \cup fn(P_2)$	
P ₁ P ₂	$\operatorname{bn}(P_1) \cup \operatorname{bn}(P_2)$	$fn(P_1) \cup fn(P_2)$	
(y)P	$\{y\} \cup bn(P)$	$fn(P) \setminus \{y\}$	
xy.P	bn(P)	$\{x,y\} \cup fn(P)$	
x(y).P	$\{y\} \cup bn(P)$	$\{x\} \cup (fn(P) \setminus \{y\})$	
au.P	bn(P)	fn(P)	
0	{}	{}	
[x = y].P	bn(P)	$\{x,y\} \cup fn(P)$	
$A(x_1,, x_n)$	{}	$\{x_1,, x_n\}$	
α * P	$bn(\alpha.P)$	$fn(\alpha.P)$	
$\mathtt{n}(\mathtt{P}) = \mathtt{fn}(\mathtt{P}) \cup \mathtt{bn}(\mathtt{P})$			

Esempi

Applichiamo le regole per calcolare:

Applicitation to regote per Catcolare:

$$bn(\overline{x}y.(z)(\overline{x}z.P + y(w).Q))$$

$$= bn((z)(\overline{x}z.P + y(w).Q))$$

$$= \{z\} \cup bn(\overline{x}z.P + y(w).Q)$$

$$= \{z\} \cup bn(\overline{x}z.P) \cup bn(y(w).Q)$$

$$= \{z\} \cup bn(P) \cup bn(y(w).Q)$$

$$= \{z,w\} \cup bn(P) \cup bn(Q)$$

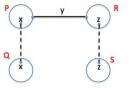
π -Calcolo: Free, bound ed Espressioni chiuse – Uso

$$\pi = \pi + \pi \mid \pi \mid \pi \mid (X)\pi \mid \alpha.\pi \mid 0 \mid [X = X]\pi \mid A(\overrightarrow{X})$$

$$\alpha = \overline{X} X \mid X(X) \mid \tau$$

- Binders e Nomi Legati. I Binder sono utilizzati in un processo per introdurre nuovi nomi/canali:
 - + interni attraverso cui i (sotto-)processi di cui è costituito potranno comunicare tra loro:
 - + esterni da trasmettere per rinnovare (*mobilità*) i canali di comunicazione esterna.
- Nomi Liberi. Rappresentano la conoscenza che un processo deve avere del contesto in cui opera.

Esempi: Una soluzione al Quesito1 (vedi anche esercizio...).



P(y) || R(y)

dove: $P(z) = (n)(z \, n.P_1 + z(v).P_2 + (x)(P_3 | | Q))$ Q() = ...R(z) = ...

...

π -Calcolo - Semantica: La relazione $\stackrel{\alpha}{\rightarrow}$ (tra π -termini)

$$\begin{array}{l} \pi = \pi + \pi \mid \pi \parallel \pi \mid (\mathtt{X})\pi \mid \alpha.\pi \mid \mathtt{O} \mid [\mathtt{X} = \mathtt{X}]\pi \mid \mathtt{A}(\overrightarrow{\mathtt{X}}) \\ \alpha = \overline{\mathtt{X}} \, \mathtt{X} \mid \mathtt{X} \, (\mathtt{X}) \mid \tau \end{array}$$

Osservazioni.

• Associatività+Commutatività: Le regole sum, par, com e close hanno la variante in cui i ruoli delle espressioni P₁ e P₂ sono tra loro scambiati (ved. esercizio...)

Notazione.

 \bullet P{w/y} rimpiazzamento di occorenze libere di y con w (vedi esercizio ...)

π -Calcolo - Applichiamo la riduzione $\stackrel{lpha}{ o}/1$

Esercizi. Applichiamo le regole al seguente sistema:

 $(z)\overline{y}z.P\parallel y(x).Q - \text{dove notiamo che S sta per } (z)(\overline{y}z.P)\parallel (y(x).Q) \text{ (vedi esercizio }...)$

Step 1: Renaming

$$\mathsf{R}(\mathsf{close})^6 \ \frac{(z)\overline{y}z.P \parallel y(x).Q \xrightarrow{\mathcal{T}} (w)(P' \parallel Q')}{(z)\overline{y}z.P \xrightarrow{\overline{y}(w)} P' \qquad y(x).Q \xrightarrow{y(w)} Q'}$$

- continua

⁶R(c) si legge reversed-c ed indica l'uso invertito della regola c: Dalle conclusioni alle sufficienti premesse. 36/60

π -Calcolo - Applichiamo la riduzione $\stackrel{lpha}{ ightarrow}/2$

$$\begin{array}{c|c} & \text{input:} \frac{\textbf{w} \notin \text{fn}(\textbf{y}|P)}{\textbf{x}(\textbf{y}).P} & \text{output:} \frac{\textbf{x} \notin \textbf{y}.P \stackrel{\overline{\textbf{x}}}{\Rightarrow} \textbf{y}}{\textbf{x} \notin \textbf{y}.P \stackrel{\overline{\textbf{x}}}{\Rightarrow} \textbf{y}} & \text{tau:} \frac{\textbf{y} \xrightarrow{\tau} \textbf{y}}{\tau.P \xrightarrow{\tau} \textbf{P}} \\ \\ & \frac{\textbf{res:} \stackrel{P \xrightarrow{\alpha} \textbf{P}'}{\textbf{x} \notin \textbf{y}} \textbf{x} \notin \textbf{n}(\alpha)}{(\textbf{x})P \xrightarrow{\alpha} \textbf{x})P'} & \text{open:} \frac{\textbf{P} \stackrel{\overline{\textbf{x}}}{\Rightarrow} \textbf{y}'}{\textbf{y}} \textbf{x} \neq \textbf{y} & \textbf{w} \notin \textbf{fn}(\textbf{y})P)}{(\textbf{y})P \stackrel{\overline{\textbf{x}}(\textbf{w})}{\Rightarrow} P' \{\textbf{w}/\textbf{y}\}} \\ \\ & \text{sum:} \frac{\textbf{P}_1 \xrightarrow{\alpha} \textbf{P}_1'}{\textbf{P}_1 + \textbf{P}_2 \xrightarrow{\alpha} \textbf{P}_1'} & \text{match:} \frac{\textbf{P} \xrightarrow{\alpha} \textbf{P}'}{[\textbf{x} = \textbf{x}]P \xrightarrow{\alpha} \textbf{P}'} \\ \\ & \frac{\textbf{def:} \frac{\textbf{P}\{\overrightarrow{\textbf{Y}}/\overrightarrow{\textbf{X}}\} \xrightarrow{\alpha} \textbf{P}' \textbf{A}(\overrightarrow{\textbf{X}}) \stackrel{\text{def}}{=} \textbf{P}}{\textbf{A}(\overrightarrow{\textbf{Y}}) \xrightarrow{\alpha} \textbf{P}'} \\ \\ & par:} \frac{\textbf{P}_1 \xrightarrow{\alpha} \textbf{P}_1' & \textbf{bn}(\alpha) \cap \textbf{fn}(\textbf{P}_2) = \{\}}{\textbf{P}_1 \parallel \textbf{P}_2 \xrightarrow{\alpha} \textbf{P}_1' \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{P}_1' \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{P}_1' \parallel \textbf{P}_2' \notin \textbf{y}/\textbf{y}} & \text{close:} \frac{\textbf{P}_1 \stackrel{\overline{\textbf{x}}}{\Rightarrow} \textbf{P}_1'}{\textbf{P}_1 \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{y}} \textbf{p}_1' \parallel \textbf{P}_2} \\ \\ & \text{close:} \frac{\textbf{P}_1 \stackrel{\overline{\textbf{x}}}{\Rightarrow} \textbf{P}_1'}{\textbf{P}_1 \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{P}_1' \parallel \textbf{P}_2' \notin \textbf{y}/\textbf{y}} & \text{close:} \frac{\textbf{P}_1 \stackrel{\overline{\textbf{x}}}{\Rightarrow} \textbf{P}_1'}{\textbf{P}_1 \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{y}} \textbf{P}_1' \parallel \textbf{P}_2} \\ \\ & \text{P}_1 \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{P}_1' \parallel \textbf{P}_2 \xrightarrow{\tau} \textbf{y}} \textbf{y}(\textbf{y}) \textbf{P}_1' \parallel \textbf{P}_2' \xrightarrow{\tau} \textbf{y} \textbf{y} \end{pmatrix} \\ \end{array}$$

Esercizi. Applichiamo le regole al seguente sistema:

 $(z)\overline{y}z.P \parallel y(x).Q - \text{dove notiamo che S sta per } (z)(\overline{y}z.P) \parallel (y(x).Q) \text{ (vedi esercizio } ...)$

Step 1: renaming

Step 2: open

$$R(\mathsf{close}) = \frac{(z)\overline{y}z.P \parallel y(x).Q \xrightarrow{\mathsf{T}} (w)(P' \parallel Q')}{(z)\overline{y}z.P \xrightarrow{\overline{y}(w)} P' \equiv P''\{w/z\}} \qquad y(x).Q \xrightarrow{y(w)} Q'$$

$$R(\mathit{open}) = \frac{(z)\overline{y}z.P \xrightarrow{\overline{y}(w)} P' \equiv P''\{w/z\}}{\overline{y}z.P \xrightarrow{\overline{y}(w)} P'} \qquad y(x).Q \xrightarrow{y(w)} Q'$$

- continua

π -Calcolo - Applichiamo la riduzione $\stackrel{lpha}{ o}/3$

$$\begin{array}{c|c} \text{input:} & \frac{\textbf{w} \notin \text{fn}(\textbf{y}|P)}{\textbf{x}(\textbf{y}).P} & \text{output:} & \frac{\textbf{x} \notin \textbf{y}.P \overset{\overline{\textbf{x}} \vee}{\rightarrow} \textbf{p}}{\textbf{x} \uplus \vdots} & \text{fus:} & \frac{\textbf{y} \xrightarrow{\tau} \textbf{p}}{\tau.P \xrightarrow{\tau} \textbf{p}} \\ \\ & res: & \frac{\textbf{p} \xrightarrow{\alpha} \textbf{p}' & \textbf{x} \notin \textbf{n}(\alpha)}{(\textbf{x})P \xrightarrow{\alpha} (\textbf{x})P'} & \text{open:} & \frac{\textbf{p} \overset{\overline{\textbf{x}} \vee}{\rightarrow} \textbf{p}' & \textbf{x} \neq \textbf{y} & \textbf{w} \notin \textbf{fn}(\textbf{y})P)}{(\textbf{y})P \overset{\overline{\textbf{x}} (\textbf{w})}{\rightarrow} P' \{\textbf{w}/\textbf{y}\}} \\ & sum: & \frac{\textbf{p}_1 \xrightarrow{\alpha} \textbf{p}_1'}{\textbf{p}_1 + \textbf{p}_2 \xrightarrow{\alpha} \textbf{p}_1'} & \text{match:} & \frac{\textbf{p} \xrightarrow{\alpha} \textbf{p}'}{[\textbf{x} = \textbf{x}]P \xrightarrow{\alpha} \textbf{p}'} \\ \\ & & \text{def:} & \frac{\textbf{p}\{\overrightarrow{\textbf{y}}'/\overrightarrow{\textbf{X}}\} \xrightarrow{\alpha} \textbf{p}' & \textbf{A}(\overrightarrow{\textbf{X}}) \overset{\text{def}}{=} \textbf{p}}{\textbf{A}(\overrightarrow{\textbf{Y}}) \xrightarrow{\alpha} \textbf{p}'} \\ \\ & par: & \frac{\textbf{p}_1 \xrightarrow{\alpha} \textbf{p}_1' & \textbf{bn}(\alpha) \cap \textbf{fn}(\textbf{p}_2) = \{\}}{\textbf{p}_1 \parallel \textbf{p}_2 \xrightarrow{\alpha} \textbf{p}_1' \parallel \textbf{p}_2} & \text{com:} & \frac{\textbf{p}_1 \overset{\overline{\textbf{x}} w}{\rightarrow} \textbf{p}_1' & \textbf{p}_2 \overset{\textbf{x}(\textbf{y})}{\rightarrow} \textbf{p}_2'}{\textbf{p}_1 \parallel \textbf{p}_2 \xrightarrow{\tau} \textbf{p}_1' \parallel \textbf{p}_2 \xrightarrow{\tau} \textbf{p}_1' \parallel \textbf{p}_2} & \text{close:} & \frac{\textbf{p}_1 \overset{\overline{\textbf{x}} (\textbf{y})}{\rightarrow} \textbf{p}_1'}{\textbf{p}_1 \parallel \textbf{p}_2 \xrightarrow{\tau} \textbf{p}_1' \parallel \textbf{p}_2} & \text{close:} & \textbf{p}_1 \parallel \textbf{p}_2 \xrightarrow{\tau} \textbf{p}_1' \parallel \textbf{p}_2 \\ \end{array}$$

Esercizi. Applichiamo le regole al seguente sistema: $(z)\overline{y}z.P \parallel y(x).Q.$

Step 1: renaming

Step 2: open

Step 3: Input

$$\begin{split} R(\text{close}) & \xrightarrow{ \left(z\right)\overline{y}z.P \ \| \ y(x).Q \xrightarrow{\mathcal{T}} \left(w\right)\left(P' \ \| \ Q'\right) } \\ R(\text{open}) & \xrightarrow{\overline{y}z.P \xrightarrow{\overline{y}z} P''} \ y \neq z \quad w \notin fn((z)P) \end{split} \\ R(\text{input}) & \xrightarrow{R(\text{input})} \underbrace{y(x).Q \xrightarrow{y(w)} Q' \equiv Q\{w/x\}}_{w \notin fn((x)Q)} \end{split}$$

- Continua

$|\pi extsf{-}\mathsf{Calcolo}$ - Applichiamo la riduzione $\stackrel{lpha}{ o}/4$

$$\begin{array}{c} \text{input:} \frac{\textbf{w} \notin \textbf{fn}((\textbf{y})\textbf{P})}{\textbf{x}(\textbf{y}).\textbf{P} \overset{\textbf{x}(\textbf{y})}{\textbf{P}} \neq \textbf{y}/\textbf{y}} \quad \text{output:} \frac{\textbf{x}}{\overline{\textbf{x}} \textbf{y}.\textbf{P} \overset{\overline{\textbf{x}}}{\textbf{y}}} \textbf{p} \quad \text{tau:} \frac{\textbf{x}}{\textbf{T}.\textbf{P} \overset{\overline{\textbf{y}}}{\textbf{P}}} \textbf{p} \\ \\ \textbf{res:} \frac{\textbf{P} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}' \quad \textbf{x} \notin \textbf{n}(\boldsymbol{\alpha})}{(\textbf{x})\textbf{P} \overset{\boldsymbol{\alpha}}{\rightarrow} (\textbf{x})\textbf{P}'} \quad \text{open:} \frac{\textbf{P} \overset{\overline{\textbf{x}}}{\textbf{y}}}{\textbf{P}^{'}} \textbf{P}' \quad \textbf{x} \neq \textbf{y} \quad \textbf{w} \notin \textbf{fn}((\textbf{y})\textbf{P}) \\ \textbf{sum:} \frac{\textbf{P}_{1} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'_{1}}{\textbf{P}_{1} + \textbf{P}_{2} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'_{1}} \quad \text{match:} \frac{\textbf{P} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'}{(\textbf{x} = \textbf{x})\textbf{P} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'} \\ \\ \textbf{def:} \frac{\textbf{P}\{\overset{\overrightarrow{\textbf{Y}}}{\textbf{Y}}, \overset{\overrightarrow{\textbf{X}}}{\textbf{Y}}\} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}' \quad \textbf{A}(\overset{\overrightarrow{\textbf{X}}}{\textbf{Y}}) \overset{\text{def}}{=} \textbf{P}}{\textbf{A}(\overset{\overrightarrow{\textbf{Y}}}{\textbf{Y}}) \overset{\textbf{def}}{=} \textbf{P}} \\ \\ \textbf{par:} \frac{\textbf{P}_{1} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'_{1} \quad \textbf{bn}(\boldsymbol{\alpha}) \cap \textbf{fn}(\textbf{P}_{2}) = \{\}}{\textbf{P}_{1} \parallel \textbf{P}_{2} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'_{1} \parallel \textbf{P}_{2} \overset{\boldsymbol{\alpha}}{\rightarrow} \textbf{P}'_{1$$

Esercizi. Applichiamo le regole al seguente sistema: $(z)\overline{y}z.P \parallel y(x).Q.$

Step 1: renaming

Step 2: open

Step 3: Input

Step 4: Output

$$\begin{array}{c} (z)\overline{y}z.P \parallel y(x).Q \xrightarrow{T} (w)(P' \parallel Q') \\ R(\text{open}) \xrightarrow{\qquad \qquad (z)\overline{y}z.P \xrightarrow{\overline{y} \in V} P' \subseteq P'' \{w/z\}} \\ R(\text{output}) \xrightarrow{\qquad \qquad \overline{y}z.P \xrightarrow{\overline{y} \in Z} P'' \subseteq P} y \neq z \qquad \text{w \notin fn((z)P)$} \end{array} \quad \begin{array}{c} R(\text{input}) \xrightarrow{y(x).Q} \xrightarrow{y(w)} Q' \subseteq Q\{w/x\} \\ w \notin fn((x)Q) \end{array}$$

Questo calcolo fornisce la seguente riduzione:

$$(z)\overline{y}z.P\parallel y(x).Q\stackrel{\mathcal{T}}{\rightarrow} (w)(P\{w/z\}\parallel Q\{w/x\}) \text{ con vincoli: } w\not\in fn((z)P) \rightarrow \psi\not\in fn((x)Q) \\ = b \quad \text{if } w \in \mathbb{R}$$

π -Calcolo - Applichiamo la riduzione $\stackrel{lpha}{ ightarrow}/5$

Esercizi. Applichiamo le regole al seguente sistema: $(z)\overline{y}z.P \parallel y(x).Q$.

```
\begin{array}{c} \text{Step 1: renaming} \\ \text{Step 2: open} \\ \text{Step 3: Input} \\ \text{Step 4: Output} \\ R(\text{close}) & \underbrace{ \begin{array}{c} (z)\overline{y}z.P \parallel y(x).Q \stackrel{\mathcal{T}}{\rightarrow} (w)(P' \parallel Q') \\ \\ R(\text{open}) & \underbrace{ \begin{array}{c} (z)\overline{y}z.P \stackrel{\overline{y}(w)}{\rightarrow} P' \equiv P'' \{w/z\} \\ \\ R(\text{output}) & \underbrace{\overline{y}z.P \stackrel{\overline{y}z}{\rightarrow} P'' \equiv P} \\ \\ R(\text{output}) & \underbrace{y(x).Q \stackrel{y(w)}{\rightarrow} Q' \equiv Q\{w/x\}}_{w \notin fn((z)P)} \end{array}}_{R(\text{output})} \end{array}
```

Questo calcolo fornisce la seguente riduzione:

$$(z)\overline{y}z.P \parallel y(x).Q \xrightarrow{\tau} (w)(P\{w/z\} \parallel Q\{w/x\}) \text{ con vincoli: } w \notin fn((z)P), w \notin fn((x)Q)$$

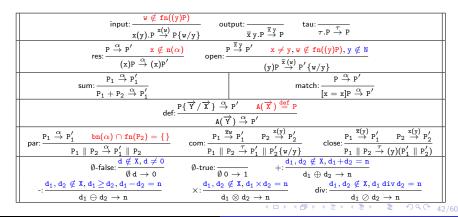
π -Calcolo. Estendiamolo con Valori: $\pi^{\mathcal{N}}$

- Pura Comunicazione. Il π -Calcolo definisce sistemi di Pura Comunicazione
 - Protocolli di Comunicazione. In tal modo II π-Calcolo è adatto a descrivere Protocolli di Comunicazione dove l'interesse è descrivere le regole con cui i processi comunicano piuttosto che il perchè e/o quali valori comunicano.
 - λ-Calcolo. Analogamente, il λ-Calcolo descrive Calcoli di Funzione dove l'interesse è descrivere la struttura computazionale (i.e. da quali funzioni è ottenuta) della funzione calcolabile piuttosto che il suo uso e/o i valori manipolati.
- Alta Espressività. Il π -Calcolo ha alta espressività ovvero è in grado di descrivere (direttamente⁷) una grande varietà di meccanismi di calcolo e strutture e costrutti linguistici quali dati strutturati, puntatori, sharing, λ -Calcolo, la Logica Combinatoria (vedi [Milner92] pag....).
- Aggiungere Valori. Si può procedere in modi diversi:
 - Espressività 1. Come abbiamo fatto nel λ -Calcolo, anche quì esprimiamo nel calcolo stesso i valori che vogliamo aggiungere;
 - Espressività 2. Utilizziamo i λ -termini che esprimono i valori e le operazioni che vogliamo aggiungere e compiliamo il tutto in π -Calcolo;
 - Estendere. Estendiamo la struttura del linguaggio, aggiungendo i valori e le operazioni come nuove primitive

π -Calcolo. Estendiamolo con Valori: π^N

- Estendiamo la struttura del linguaggio, aggiungendo i valori e le operazioni come nuove primitive
- Valori sono i naturali N (in notazione decimale) con le quattro operazioni indicate ⊕, ⊖, ⊗, ⊘ e il predicato Ø (test sullo 0).

$$\begin{array}{l} \pi = \pi + \pi \mid \pi \parallel \pi \mid (\mathbf{X})\pi \mid \alpha.\pi \mid \mathbf{0} \mid [\mathbf{D} = \mathbf{D}]\pi \mid \mathbf{A}(\overrightarrow{\mathbf{X}}) \\ \alpha = \overline{\mathbf{X}} \, \mathbf{E} \mid \mathbf{X} \, (\mathbf{X}) \mid \tau \qquad \mathbf{D} = \mathbf{X} \mid \mathbf{N} \qquad \mathbf{E} = \mathbf{D} \mid \mathbf{D} \oplus \mathbf{D} \mid \mathbf{D} \ominus \mathbf{D} \mid \mathbf{D} \otimes \mathbf{D} \mid \mathbf{D} \oslash \mathbf{D} \end{array}$$



π^N -Calcolo.Programmare in π^N : Un esercizio di coordinamento di Processi - Exp Aritmetica

• **Programma** per il calcolo dell'espressione: $E \equiv (3+5) \times 7 \operatorname{div} 3$.

Soluzione:

Individuiamo i sotto-termini (non valori):

$$E_1 \equiv (3+5)$$

 $E_2 \equiv E_1 \times 7$
 $E \equiv E_2 \operatorname{div} 3$

 e compiliamo separatamente, introducendo: 1 canale di input per ogni sotto-termine che non sia un valore, e 1 canale di output ove inserire il valore calcolato

E1(
$$\mathbf{r}_1$$
) $\stackrel{\text{def}}{=} \overline{\mathbf{r}_1} 3 \oplus 5.0$
E2($\mathbf{x}_2, \mathbf{r}_2$) $\stackrel{\text{def}}{=} \mathbf{x}_2(\mathbf{n}).\overline{\mathbf{r}_2} \mathbf{n} \otimes 7.0$
E3($\mathbf{x}_3, \mathbf{r}_3$) $\stackrel{\text{def}}{=} \mathbf{x}_3(\mathbf{n}).\overline{\mathbf{r}_3} \mathbf{n} \oslash 3.0$

• e componiamo:

π^N -Calcolo. Programmare in π^N : Un esercizio di Progr. Sequenziale - La funzione fattoriale

- Programma per il calcolo del fattoriale: $f(n) \equiv if n = 0$ then 1 else $n \times f(n-1)$. Soluzione:
 - Traduciamo in un processo Defined Agent di nome F;
 - L'agent avrà un canale x per l'input, ed un canale r per l'output:
 F(x, r) def E
 - Traduciamo l'espressione condizionale in un match sul predicato \emptyset n $E \equiv x(n).(y)(\overline{y} \emptyset n.0 \parallel y(t).([t=1]E_1 \parallel [t=0]E_2))$ Legge il valore input n sul canale x, genera un canale interno y su cui è scritto il valore del test \emptyset n e, in modo concorrente, letto per il match da E_1 e da E_2
 - Generiamo l'espressione E_1 $E_1 \equiv \overline{r} 1.0$

Corrisponde alla traduzione del ramo then del condizionale: Scrive il valore ${\bf 1}$ nel canale di output ${\bf r}$ e termina

• Generiamo l'espressione E2

$$\begin{split} E_2 &\equiv (r_1)((r_1(m).\overline{r}\ n\otimes m.0) \parallel (z)(\overline{z}\ n\ominus 1.0 \parallel F(z,r_1))) \\ \text{Corrisponde alla traduzione del ramo else del condizionale. Introduce un canale interno r_1 utilizzato in scrittura da $(z)(\overline{z}\ n\ominus 1.0 \parallel F(z,r_1))$, come canale di output di $F(z,r_1)$. Quest'ultimo legge dal canale z dove il processo $\overline{z}\ n\ominus 1.0$ avrà scritto, prima di terminare, il valore calcolato per il decremento di n. \\ & \square > 4 \ \square$$

π^N -Calcolo. Programmare in π^N : Programmazione Sequenziale in π -Calcolo

• Possiamo Esprimere la programmazione sequenziale (e con essa, gli algoritmi sequenziale implementati) in π -Calcolo.

```
f(n) \equiv if n=0 then 1 else n \times f(n-1). può essere espressa in \pi^N, da:
```

$$F(\textbf{x},\textbf{r}) \stackrel{\text{def}}{=} \textbf{x}(\textbf{n}).(\textbf{y})(\overline{\textbf{y}} \ \emptyset \ \textbf{n.0} \parallel \textbf{y}(\textbf{t}).([\textbf{t}=\textbf{1}]\textbf{E}_1 \parallel [\textbf{t}=\textbf{0}]\textbf{E}_2))$$

- Possiamo Compilare il λ -Calcolo in π -Calcolo in modo estremamente semplice (vedi [Milner92] Example 9, pag. 24-27)
- Possiamo Compilare la Logica Combinatoria in π -Calcolo in modo estremamente semplice (vedi [Milner92] Example 8, pag. 21-24)
- Cosa ci guadagnamo?
 - Migliora la Complessità? NO: L'algoritmo implementato rimane sequenziale!
 - Migliora l'Efficienza? Il ridotto costo di alcune operazioni (che potrebbero essere avvantaggiate dalla concorrenza) è compensato dal costo della comunicazione:
 - Integrazione di algoritmi sequenziali con concorrenti, in un ambiente di calcolo distribuito: Molti sistemi che operano in rete utilizzano algoritmi di entrambi i tipi.

π^N -Calcolo. Programmare in π^N : Un esercizio di Progr. Distribuita - Il Consenso /1

- Programma per il calcolo del Consenso: Una popolazione finita di agenti richiede di concordare su un valore tra un insieme S finito possibile. Assumeremo $S \equiv \{p,n,i\}$. Gli agenti possono comunicare in coppie il valore scelto da ciascuno ed eventualmente cambiare valore in accordo ad un dato protocollo.
 - Assumeremo un protocollo a 3 regole così definito: Se i due agenti hanno scelto (1) stesso valore, mantengono tale valore;
 - (2) uno ha scelto p (per positivo), l'altro n (per negativo), entrambi cambiano valore in i (per indeciso);
 - (3) uno solo ha scelto i, quell'uno cambia valore nel valore scelto dall'altro.

Soluzione:

 Definiamo 1 defined agent A(s,x): L'argomento s è lo stato, l'argomento x indica il canale su cui il processo è comunicante con l'esterno. Lo stato interno indica il valore correntemente scelto dall'agente.

$$\begin{split} \mathtt{A}(\mathtt{s},\mathtt{x}) &\stackrel{\mathrm{def}}{=} (\mathtt{y})((\overline{\mathtt{x}}\mathtt{y}.\mathtt{y}(\mathtt{v}).\overline{\mathtt{y}}\mathtt{s}.\mathtt{E}(\mathtt{s},\mathtt{v},\mathtt{x}) + (\mathtt{x}(\mathtt{w}).\overline{\mathtt{w}}\mathtt{s}.\mathtt{w}(\mathtt{v}).\mathtt{E}(\mathtt{s},\mathtt{v},\mathtt{x}))) \\ & \text{where } \mathtt{E}(\mathtt{s},\mathtt{v},\mathtt{x}) \stackrel{\mathrm{def}}{=} [\mathtt{v} = \mathtt{s}].\mathtt{A}(\mathtt{s},\mathtt{x}) \parallel [\mathtt{s} = \mathtt{i}]\mathtt{A}(\mathtt{v},\mathtt{x}) \\ & \parallel [\mathtt{s} = \mathtt{p}][\mathtt{v} = \mathtt{n}]\mathtt{A}(\mathtt{i},\mathtt{x}) \parallel [\mathtt{s} = \mathtt{n}][\mathtt{v} = \mathtt{p}]\mathtt{A}(\mathtt{i},\mathtt{x}) \end{split}$$

- continua

π^N -Calcolo. Programmare in π^N : Un esercizio di Progr. Distribuita - Il Consenso /2

Programma per il calcolo del Consenso: ...

Soluzione:

 Definiamo 1 defined agent A(s,x): L'argomento s lo stato interno e l'argomento x indica il canale su cui il processo è comunicante con l'esterno. Lo stato interno indica il valore dall'agente.

$$\begin{split} \mathtt{A}(\mathtt{s},\mathtt{x}) &\stackrel{\mathrm{def}}{=} (\mathtt{y})((\overline{\mathtt{x}}\mathtt{y}.\mathtt{y}(\mathtt{v}).\overline{\mathtt{y}}\mathtt{s}.\mathtt{E}(\mathtt{s},\mathtt{v},\mathtt{x}) + (\mathtt{x}(\mathtt{w}).\overline{\mathtt{w}}\mathtt{s}.\mathtt{w}(\mathtt{v}).\mathtt{E}(\mathtt{s},\mathtt{v},\mathtt{x}))) \\ \text{where } \mathtt{E}(\mathtt{s},\mathtt{v},\mathtt{x}) &\stackrel{\mathrm{def}}{=} [\mathtt{v} = \mathtt{s}].\mathtt{A}(\mathtt{s},\mathtt{x}) \parallel [\mathtt{s} = \mathtt{i}]\mathtt{A}(\mathtt{v},\mathtt{x}) \\ \parallel [\mathtt{s} = \mathtt{p}][\mathtt{v} = \mathtt{n}]\mathtt{A}(\mathtt{i},\mathtt{x}) \parallel [\mathtt{s} = \mathtt{n}][\mathtt{v} = \mathtt{p}]\mathtt{A}(\mathtt{i},\mathtt{x}) \end{split}$$

 Definiamo i 3 agenti base P(x), N(x), I(x): L'argomento x indica il canale su cui il processo è comunicante con l'esterno. Lo stato interno indica il valore dall'agente.

$$P(x) \stackrel{\text{def}}{=} A(p, x); \quad N(x) \stackrel{\text{def}}{=} A(n, x); \quad I(x) \stackrel{\text{def}}{=} A(i, x)$$

• Il programma per il Consenso:

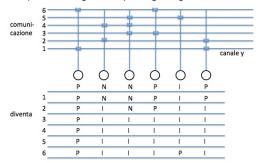
$$\underbrace{P(x)\parallel\ldots\parallel P(x)}_{k_p}\parallel\underbrace{N(x)\parallel\ldots\parallel N(x)}_{k_n}\parallel\underbrace{I(x)\parallel\ldots\parallel I(x)}_{k_{\underline{1}}}$$

π^N -Calcolo. Programmare in π^N : Un esercizio di Progr. Distribuita - Il Consenso /3

• Il programma per il Consenso:

$$\underbrace{P(x) \parallel ... \parallel P(x)}_{k_p} \parallel \underbrace{N(x) \parallel ... \parallel N(x)}_{k_n} \parallel \underbrace{I(x) \parallel ... \parallel I(x)}_{k_1}$$

- Ogni computazione del programma è ottenuta dalle riduzioni risultanti dall'applicazione delle regole di inferenza date per il calcolo.
- Vediamo però un diagramma per seguire graficamente una computazione:



π^N -Calcolo. Programmare in π^N : Un esercizio di Progr. Distribuita - Numero di Comunicazioni /1

 Programma per il Calcolo delle Comunicazione tra Processi. Un sistema distribuito richiede di rilevare su un canale pubblico ma dedicato z il numero di comunicazioni tra i processi del sistema indipendentemente dal canale utilizzato (il canale z non si considera). Si discuta come potrebbe essere integrato il codice del sistema scritto in π^N.

Soluzione:

Definiamo 2 Defined Agents. Il primo che chiameremo Count, resta in attesa sul canale z per ogni avviso di fine di comunicazione. Ad ogni ricezione di fine comunicazione, Count incrementa un parziale (inizializzato a 0) di 1 unità. Il secondo che chiameremo End, è attivato dai processi del sistema originale, al termine di ogni comunicazione, per emettere il relativo avviso.

$$\begin{aligned} & \text{Count}(\mathbf{s}) \stackrel{\text{def}}{=} \mathbf{z}(\mathbf{m}).(\mathbf{x})(\mathbf{x}(\mathbf{v}).\text{Count}(\mathbf{v}) \| \overline{\mathbf{x}} \, \mathbf{s} \oplus 1.0) \\ & \text{End}() \stackrel{\text{def}}{=} \overline{\mathbf{z}} \, 1^8 \end{aligned}$$

- continua

⁸L'uso di 1 in End è inessenziale ma potrebbe essere quello di un codice indicante la fine di una comunicazione. 49/60

π^N -Calcolo. Programmare in π^N : Un esercizio di Progr. Distribuita - Numero di Comunicazioni /2

• Programma per il Calcolo delle Comunicazione tra Processi. Un sistema distri-

Soluzione:

- Definiamo 2 Defined Agents. Il primo che chiameremo Count, resta ...
 Count(s) ^{def}= z(m).(x)(x(v).Count(v) || x̄ s⊕1.0)
 End() ^{def}= z̄ end
- Indichiamo con S il sistema iniziale. Il nuovo sistema diventa: $S' \parallel Count(0)$

dove:

- S' è S in cui dopo il codice relativo ad ogni comunicazione terminata è inserito End().
- Count(0) sta per: $(w)(w(s).Count(s) \parallel \overline{w} 0.0)$.

Esercizio

Si completino i calcoli indicati con '...' nelle slides precedenti.

Esercizio

Si mostri la sequenza di α – red applicate per ridurre il termine dato ad un termine contenente sempre, identificatori diversi per variabili diverse: $\lambda x.\lambda y.(\lambda x.y(\lambda y.x)x)(\lambda y.x(\lambda x.yx)y)$

Esercizio

Si dimostri che: $\forall F, \ \Psi F = F(\Psi F)$

Esercizio

- Si scriva, in Lambda-Calcolo, un programma per la funzione plus introdotta nell'aritmetica data per tale linguaggio.
- Si mostri la computazione di plus[2][1]

Esercizio

Si scriva, in Lambda-Calcolo, un programma per la funzione zerop che calcola il test su zero nell'aritmetica data per tale linguaggio.

Esercizio

Si dia una semantica SOS per la Logica Combinatoria

Esercizio

Si dimostri che SKK = I

Esercizio

Si scriva, in Logica Combinatoria, un programma per la funzione plus introdotta nell'aritmetica data per tale linguaggio.

Esercizio

Si scriva, in Logica Combinatoria, un programma per la funzione minus introdotta nell'aritmetica data per tale linguaggio.

Esercizio

In π -Calcolo, il termine $P_1 + ... + P_n$ equivale ad ogni termine corrispondente ad un albero binario con nodi interni + e frontiera ogni permutazione di $P_1, ..., P_n$. Si mostri il significato dell'affermazione, discutendo i seguenti punti:

- Fornire una definizione della corrispondenza π-termine/albero binario, richiamata nell'affermazione;
- 2) Indicare quali proprietà del π -Calcolo giustificano tale affermazione;
- 3) Esprimere il numero di tali, diversi, alberi binari;
- 4) Dire se, e quali, altri operatori del π -Calcolo mostrano analoga proprietà.