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Introduction

Bayesian Learning

Why Bayesian? Easy, because of frequent use of Bayes
theorem...
Bayesian Inference A powerful approach to probabilistic

reasoning
Bayesian Networks An expressive model for describing

probabilistic relationships
Why bothering?

Real-world is uncertain
Data (noisy measurements and partial knowledge)
Beliefs (concepts and their relationships)

Probability as a measure of our beliefs
Conceptual framework for describing uncertainty in world
representation
Learning and reasoning become matters of probabilistic
inference
Probabilistic weighting of the hypothesis
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Probability and Learning
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Random Variables

A Random Variable (RV) is a function describing the
outcome of a random process by assigning unique values
to all possible outcomes of the experiment

Random Process =⇒ Coin Toss

Discrete RV =⇒ X =

{
0 if heads
1 if tails

The sample space S of a random process is the set of all
possible outcomes, e.g. S = {heads, tails}
An event e is a subset e ∈ S, i.e. a set of outcomes, that
may occur or not as a result of the experiment

Random variables are the building blocks for representing our
world
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Probability Functions

A probability function P(X = x) ∈ [0,1] (P(x) in short)
measures the probability of a RV X attaining the value x ,
i.e. the probability of event x occurring
If the random process is described by a set of RVs
X1, . . . ,XN , then the joint conditional probability writes

P(X1 = x1, . . . ,XN = xn) = P(x1 ∧ · · · ∧ xn)

Definition (Sum Rule)
Probabilities of all the events must sum to 1∑

x

P(X = x) = 1
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Product Rule and Conditional Probabilities

Definition (Product Rule a.k.a. Chain Rule)

P(x1, . . . , xi , . . . , xn|y) =
N∏

i=1

P(xi |x1, . . . , xi−1, y)

P(x |y) is the conditional probability of x given y
Reflects the fact that the realization of an event y may
affect the occurrence of x
Marginalization: sum and product rules together yield the
complete probability equation

P(X1 = x1) =
∑
x2

P(X1 = x1,X2 = x2)

=
∑
x2

P(X1 = x1|X2 = x2)P(X2 = x2)
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Bayes Rule

Given hypothesis hi ∈ H and observations d

P(hi |d) =
P(d|hi)P(hi)

P(d)
=

P(d|hi)P(hi)∑
j P(d|hj)P(hj)

P(hi) is the prior probability of hi

P(d|hi) is the conditional probability of observing d given
that hypothesis hi is true (likelihood).
P(d) is the marginal probability of d
P(hi |d) is the posterior probability that hypothesis is true
given the data and the previous belief about the
hypothesis.
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Independence and Conditional Independence

Two RV X and Y are independent if knowledge about X
does not change the uncertainty about Y and vice versa

I(X ,Y )⇔ P(X ,Y ) = P(X |Y )P(Y )

= P(Y |X )P(X ) = P(X )P(Y )

Two RV X and Y are conditionally independent given Z if
the realization of X and Y is an independent event of their
conditional probability distribution given Z

I(X ,Y |Z )⇔ P(X ,Y |Z ) = P(X |Y ,Z )P(Y |Z )

= P(Y |X ,Z )P(X |Z ) = P(X |Z )P(Y |Z )
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Representing Probabilities with Discrete Data

Joint Probability Distribution Table

X1 . . . Xi . . . Xn P(X1, . . . ,Xn)

x
′

1 . . . x
′

i . . . x
′
n P(x

′

1, . . . , x
′
n)

x l
1 . . . x l

i . . . x l
n P(x l

1, . . . , x
l
n)

Describes P(X1, . . . ,Xn) for all the RV instantiations x1, . . . , xn

In general, any probability of interest can be obtained starting
from the Joint Probability Distribution P(X1, . . . ,Xn)
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Wrapping Up....

We know how to represent the world and the observations
Random Variables =⇒ X1, . . . ,XN
Joint Probability Distribution =⇒ P(X1 = x1, . . . ,XN = xn)

We have rules for manipulating the probabilistic knowledge
Sum-Product
Marginalization
Bayes
Conditional Independence

It is about time that we do some...
Inference - Reasoning and making predictions from a
Bayesian perspective
Learning - Discover the values for P(X1 = x1, . . . ,XN = xn)
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Bayesian Learning and Inference

Statistical learning approaches calculate the probability of
each hypothesis hi given the data D, and selects
hypotheses/makes predictions on that basis
Bayesian learning makes predictions using all hypotheses
weighted by their probabilities

P(X |D = d) =
∑

i

P(X |d,hi)P(hi |d)

=
∑

i

P(X |hi) · P(hi |d)

New prediction Hypothesis prediction Posterior weighting
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Single Hypothesis Approximation

Computational and Analytical Tractability Issue
Bayesian Learning requires a (possibly infinite) summation over
the whole hypothesis space

Maximum a-Posteriori (MAP) predicts P(X |hMAP) using the
most likely hypothesis hMAP given the training data

hMAP = arg max
h∈H

P(h|d) = arg max
h∈H

P(d|h)P(h)
P(d)

= arg max
h∈H

P(d|h)P(h)

Assuming uniform priors P(hi) = P(hj), yields the
Maximum Likelihood (ML) estimate P(X |hML)

hML = arg max
h∈H

P(d|h)
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All Too Abstract?

Let’s go to the Cinema!!!

How do I choose the next movie
(prediction)?
I might ask my friends for their favorite
choice given their personal taste
(hypothesis)
Select the movie

Bayesian advice? Make a voting from all the friends’ suggestions
weighted by their attendance to cinema and taste judgement
MAP advice? From the friend who goes often to the cinema and
whose taste I trust
ML advice? From the friend who goes more often to the cinema
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The Candy Box Problem

A candy manufacturer produces 5 types of candy boxes
(hypothesis) that are indistinguishable in the darkness of
the cinema

h1 100% cherry flavor
h2 75% cherry and 25% lime flavor
h3 50% cherry and 50% lime flavor
h4 25% cherry and 75% lime flavor
h5 100% lime flavor

Given a sequence of candies d = d1, . . . ,dN extracted and
reinserted in a box (observations), what is the most likely
flavor for the next candy (prediction)?
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Candy Box Problem
Hypothesis Posterior

First, we need to compute the posterior for each
hypothesis (Bayes)

P(hi |d) = αP(d|hi)P(hi)

The manufacturer is kind enough to provide us with the
production shares (prior) for the 5 boxes

P(h1),P(h2),P(h3),P(h4),P(h5) = (0.1,0.2,0.4,0.2,0.1)

Data likelihood can be computed under the assumption
that observations are independently and identically
distributed (i.i.d.)

P(d|hi) =
N∏

j=1

P(dj |hi)
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Candy Box Problem
Hypothesis Posterior Computation

Suppose that the bag is a h5 and consider a sequence of 10
observed lime candies
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h1 0.1 0 0
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h3 0.4 0.4 0.30
h4 0.2 0.3 0.35
h5 0.1 0.2 0.31

P(hi |d) = αP(hi)P(d = l |hi)
N

Most likely MAP hypothesis is re-evaluated as more data
comes in



Bayesian Inference
Hypothesis Selection
Candy Box Example

Candy Box Problem
Comparing Predictions

Bayesian learning seeks

P(d11 = l |d1 = l , . . . ,d10 = l) =
5∑

i=1

P(d11 = l |hi)P(hi |d)
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Observations

Both ML and MAP are point estimates since they only
make predictions based on the most likely hypothesis
MAP predictions are approximately Bayesian if
P(X |d) ∼ P(X |hMAP)

MAP and Bayesian predictions become closer as more
data gets available
ML is a good approximation to MAP if dataset is large and
there are no a-priori preferences on the hypotheses

ML is fully data-driven
For large data sets, the influence of prior becomes
irrelevant
ML has problems with small datasets
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Parameter Learning in Bayesian Models

Find numerical parameters for a probabilistic model
Determine the best hypothesis hθ regulated by a (set of)
parameter θ

hθ : the expected proportion of coin tosses
returning heads is θ

Define the usual Bayesian probabilities
Prior P(hθ) = P(θ)

Likelihood P(d|hθ) = P(d|θ)
Posterior P(hθ|d) = P(θ|d)

If hypotheses are equiprobable it is reasonable to try
Maximum Likelihood Estimation
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Biased Coin

Estimate the probability of a coin toss returning head

Maximum Likelihood Find the unknown probability of heads θ

θML =
nheads

nheads + ntails

Maximum a Posteriori Learn the distribution for the expected
proportion of heads θ given the data

P(θ|d) = P(d|θ)P(θ) ∼ Beta(αH+nheads, αT+ntails)

where αH and αT can be thought of as imaginary
counts of our prior experience
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The Model
Learning
Text Classification Example

Naive Bayes Classifier

One of the simplest, yet popular, tools based on a strong
probabilistic assumption

Consider the setting
Target classification function f : X −→ C
Each instance x ∈ X is described by a set of attributes

x =< a1, . . . ,al , . . . ,aL >

Seek the MAP classification

cNB = arg max
cj∈C

P(cj |a1, . . . ,aL)
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Naive Bayes Assumption

The MAP classification rewrites
cNB = arg max

cj∈C
P(cj |a1, . . . ,aL)

= arg max
cj∈C

P(a1, . . . ,aL|cj)P(cj)

Naive Bayes: Assume conditional independence between the
attributes al given classification cj

P(a1, . . . ,aL|cj) =
L∏

l=1

P(al |cj)

Naive Bayes Classification

cNB = arg max
cj∈C

P(cj)
L∏

l=1

P(al |cj)
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Learning Naive Bayes with Discrete Data (I)

Given N observed training pairs d = {(xj , cj)} s.t.
xj =< a1, . . . ,aL >

Find the maximum likelihood estimate of the model
parameters θ

max
θ

P(d|θ)

The Naive Bayes parameters θ include
The attribute-class distribution P(al = s|c = k) s.t.
1 ≤ s ≤ S and 1 ≤ k ≤ K
The class prior P(c = k) s.t. 1 ≤ k ≤ K

Notice
Learning is performed by ML, while classification is performed
by selecting the MAP hypothesis
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Learning Naive Bayes with Discrete Data (II)

Class prior update

P(c = k) =

∑D
j=1 zjk

D
=

N(k)
D

Attribute-class distribution update

P(al = s|c = k) =

∑D
j=1 zjk t ls

j∑D
j=1 zjkL

=
Nls(k)

L · S · N(k)

Maximum likelihood estimates are computed by counting the
realizations of an event to obtain frequencies
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Naive Bayes Classification

Learning essentially amounts to counting frequencies
Naive Bayes classification works surprisingly well when...

Attributes are close to be independent
Noisy data
High dimensional problems (scalability)
Large datasets (point estimates)

However, what happens if a class ck has no occurrences of
an attribute al = s

P(al = s|c = k) =
Nls(k)

L · S · N(k)
= 0 =⇒ P(c = k |x) = 0 ∀x

Need to be careful when applying NB to sparse data
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Smoothed Naive Bayes

Smoothing⇒ dealing with the zero events problem
Add a constant term α in both the numerator and the
denominator to smooth the estimation

P(al = s|c = k) =
Nls(k) + α

L · S · N(k) + L · S · α

α = 1⇒ Laplace smoothing
Can improve NB performance up to 20%..

..or it can cause interference in learning
Giving too much probability to unfrequent events

α is a priori estimate of the attribute-class probability
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Text Classification

Loads of useful applications
Learn to classify web-pages by topic
Determine if an incoming email contains spam
...

Problem characterized by
Large sample size (i.e. large document collections)
High dimensional data (i.e. the vocabulary)

Well-fit for Naive Bayes classifiers
One of the most effective models used in the field (e.g.
DSPAM, SpamAssassin, SpamBayes, Bogofilter)
Need to count events (document representation)
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Bag of Words Document Representation

Count the occurrences of each dictionary word in your
document
Represent a document d as a vector xd of word counts
Easy to compute frequencies from word counts

Definition (Bag of Words Assumption)

Word order is not relevant for determining document semantics
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Learning Naive Bayes for Text Classification

Given a set of N training documents represented as vector
of word counts xj = [w1, . . . ,wl , . . . ,wL] (vocabulary size L)
for each document classification k = 1 to K

doc(k)← set of training documents in class k

P(c = k)← |doc(k)|
N

text(k)← concatenation of all docs in doc(k)
Nj ← |text(k)| including duplicates
for each word wl in the vocabulary

nl ← no occurrences of wl in text(k)

P(wl |c = k)← nl + 1
Nj + L

Predict cNB = arg max
k

P(c = k)
L∏

l=1

P(wl |k)
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20 Newsgroups Case Study

Collection of approximately 20K newsgroup documents
partitioned evenly across 20 different newsgroups
Training set 10K documents

Test set 7K documents
Vocabulary 100 words
Learning to classify an incoming newsgroup message into
one of the top 4 high level newsgroup classes

comp. rec. sci. talk.
comp.graphics rec.motorcycles sci.crypt talk.politics.misc
comp.os.ms-windows.misc rec.sport.baseball sci.electronics talk.politics.guns
comp.sys.ibm.pc.hardware rec.sport.hockey sci.med talk.politics.mideast
comp.sys.mac.hardware rec.autos sci.space talk.religion.misc
comp.windows.x

Credit goes to Mark Girolami @ Glasgow University
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Representing Conditional Independence

Naive Bayes (NB)
Full independence given the class
Extremely restrictive assumption

Bayes Optimal Classifier (BOC)
No independence information between RV
Computationally expensive

AlarmAnnouncement

Neighbour
Call

Radio

BurglaryEarthquake

Bayesian Network (BNs) describe
conditional independence between
subsets of RV by a graphical model

I(X ,Y |Z )⇔ P(X ,Y |Z ) = P(X |Z )P(Y |Z )

Combine a-priori information
concerning RV dependencies with
observed data
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Bayesian Network - Directed Representation

Directed Acyclic Graph (DAG)
Nodes represent random variables

Shaded⇒ observed
Empty⇒ un-observed

Edges describe the conditional
independence relationships
Every variable is conditionally
independent w.r.t. its
non-descendant, given its parents

Conditional Probability Tables (CPT) local to each node
describe the probability distribution given its parents

P(Y1, . . . ,YN) =
N∏

i=1

P(Yi |pa(Yi))
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Naive Bayes as a Bayesian Network

... ... aL

c

ala1 a2 D

L

c

al

Naive Bayes classifier can be represented as a Bayesian
Network
A more compact representation =⇒ Plate Notation
Allows specifying more (Bayesian) details of the model
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Plate Notation

L C

D

al βj

c

π

Bayesian Naive Bayes

Boxes denote replication for a
number of times denoted by the
letter in the corner
Shaded nodes are observed
variables
Empty nodes denote un-observed
latent variables
Black seeds identify constant terms
(e.g. the prior distribution π over the
classes)
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Learning with Bayesian Networks

Structure
Fixed Structure Fixed Variables

X Y
P(Y |X)

X Y
P(X , Y )

D
at

a C
om

pl
et

e

Naive Bayes
Calculate Frequencies (ML)

Discover dependencies
from the data

Structure Search
Independence tests

In
co

m
pl

et
e

Latent variables

EM Algorithm (ML)
MCMC, VBEM (Bayesian)

Difficult Problem

Structural EM

Parameter Learning Structure Learning
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Take Home Messages

Bayesian learning is a powerful all-in-one model for
Modeling your knowledge about the world (Bayesian
Networks)
Inference - probabilistic approach to reasoning and
prediction
Learning - discovering the parameters of given probability
distributions

Bayesian representation of the world
Random variables as building blocks
Conditional independence relations among RV expressed
graphically by a Bayesian network

ML learning selects the hypothesis that maximizes data
likelihood
MAP learning selects the most likely hypothesis given the
data
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