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Drowning into complex data

Slide credit goes to Percy Liang (Lawrence Berkeley National Laboratory)
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Exploratory Data Analysis (EDA)

Discover structure in data
Find unknown patterns in the data that cannot be predicted
using current expert knowledge
Formulate new hypotheses about the causes of the
observed phenomena

A mix of graphical and quantitative techniques
Visualization
Finding informative attributes in the data
Finding natural groups in the data

Interdisciplinary approach
Computer graphics
Machine learning
Data Mining
Statistics
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A Machine Learning Perspective

Often an unsupervised learning task
Dimensionality reduction

Feature Extraction
Feature Selection

Clustering
Tackle with

Large datasets..
...as well as high-dimensional data and small sample size

Exploiting tools and models beyond statistics
E.g. non-parametric neural models
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Finding Natural Groups in DNA Microarray

SL Pomeroy et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene

expression, Nature, 415, 436-442
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Finding Informative Genes

SL Pomeroy et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene

expression, Nature, 415, 436-442
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Curse of Dimensionality
General View

The Curse of Dimensionality

If the data lies in a high dimensional space, then an enormous
amount of data is required to learn a model

Curse of Dimensionality (Bellman, 1961)
Some problems become intractable as the number of the
variables increases

Huge amount of training data required
Too many model parameters (complexity)

Given a fixed number of
training samples, the
predictive power reduces as
sample dimensionality
increases (Hughes Effect,
1968)
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Curse of Dimensionality
General View

A Simple Combinatorial Example (I)

A toy 1-dimensional classification task with 3 classes

Classes cannot be separated well: lets add another feature..

Better class separation, but still errors. What if we add another
feature?
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Curse of Dimensionality
General View

A Simple Combinatorial Example (II)

Classes are well
separated

Exponential growth in the complexity of the learned model
with increasing dimensionality
Exponential growth in the number of examples required to
maintain a given sampling density

3 samples per bin in 1-D
81 samples per bin in 3-D
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Curse of Dimensionality
General View

Intrinsic Dimension

The intrinsic dimension of data is the minimum number of
independent parameters needed to account for the observed
properties of the data

Data might live in a lower dimensional surface (fold) than
expected
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Curse of Dimensionality
General View

What is the Intrinsic Dimension?

Might not be an easy question to answer...

It may increase due to noise
A data fold needs to be unfolded to reveal its intrinsic dimension
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Curse of Dimensionality
General View

Informative Vs Uninformative Features

Data can be made of several dimensions that are either
unimportant or comprise only noise

Irrelevant information might distract the learning model
Learning resources (memory) are wasted to represent
irrelevant portions of the input space

Dimensionality reduction aims at automatically finding a
lower-dimensional representation of high-dimensional data

Counteracts the curse of dimensionality
Reduces the effect of unimportant attributes
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Curse of Dimensionality
General View

Why Dimensionality Reduction?

Data Visualization
Projecting high-dimensional data to a 2D/3D screen space
Preserving topological relationships
E.g. visualize semantically related textual documents

Data Compression
Reducing storage requirements
Reducing complexity
E.g. stopwords removal

Feature ranking and selection
Identifying informative bits of information
Noise reduction
E.g. identify words correlated with document topics
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Curse of Dimensionality
General View

Flavors of Dimensionality Reduction

Feature Extraction - Create a lower dimensional representation
of x ∈ RD by combining the existing features with a given
function f : RD → RD′

x =


x1
x2
. . .

xD

 y=f (x)−−−−→ y =


y1
y2
. . .
yD′


Feature Selection - Choose a D′-dimensional subset of all the
features (possibly the most-informative)

x =


x1
x2
. . .

xD

 select i1,...,iD′−−−−−−−−→ y =


xi1
xi2
. . .
xiD′


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Curse of Dimensionality
General View

A Unique Formalization

Definition (Dimensionality Reduction)

Given an input feature space x ∈ RD find a mapping
f : RD → RD′

such that D′ < D and y = f (x) preserves most of
the informative content in x.

Often the mapping f (x) is chosen as a linear function y = Wx
y is a linear projection of x
W ∈ RD′ × RD is the matrix of linear coefficients

y1
y2
. . .
yD′

 =


w11 w12 . . . w1D
w21 w22 . . . w2D
. . . . . . . . . . . .

wD′1 wD′2 . . . wD′D




x1
x2
. . .

xD


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Curse of Dimensionality
General View

Unsupervised Vs Supervised Dimensionality
Reduction

The linear/nonlinear map y = f (x) is learned from the data
based on an error function that we seek to minimize

Signal representation (Unsupervised)

The goal is to represent the
samples accurately in a
lower-dimensional space
Principal Component Analysis
(PCA)

Classification (Supervised)

The goal is to enhance the
class-discriminatory information in
the lower-dimensional space
Linear Discriminant Analysis (LDA)
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Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

Feature Extraction

Objective - Create a lower dimensional representation of
x ∈ RD by combining the existing features with a given function
f : RD → RD′

, while preserving as much information as possible

x =


x1
x2
. . .

xD

 y=f (x)−−−−→ y =


y1
y2
. . .
yD′


where D′ � D and, for visualization, D′ = 2 or D′ = 3.
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Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

Linear Feature Extraction

Signal Representation (Unsupervised)
Independent Component Analysis (ICA)
Principal Component Analysis (PCA)
Non-negative Matrix Factorization (NMF)

Classification (Supervised)
Linear Discriminant Analysis (LDA)
Canonical Correlation Analysis (CCA)
Partial Least Squares (PLS)

We focus on unsupervised approaches exploiting linear
mapping functions
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Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

Linear Methods Setup

Given N samples xn ∈ RD, define the input data as the matrix

X =

x11 | . . . xN1
. . . x2 . . . . . .
x1D | . . . xND

 ∈ RD × RN

Choose D′ � D projection directions wk

W =

w11 | . . . wD′1
. . . w2 . . . . . .

w1D | . . . xD′D

 ∈ RD × RD′

Compute the projection of x along each direction wk as

y = [y1, . . . , yD′ ]T = WT x

Linear methods only differ in the criteria used for choosing W
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Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

Linear Projection - A Graphical Interpretation

3D samples projected on an
hyperplane generated by 2
projection directions

2D projection of the input
samples on the hyperplane
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Finding Linear Projections
Principal Component Analysis
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Principal Component Analysis (PCA)

Orthogonal linear projection of high dimensional data onto a
low dimensional subspace preserving as much variance
information as possible

Objective
1 Minimize the projection error,

i.e. the error of the
reconstructed sample
‖xn − x̃n‖

2 Maximize the variance of the
projected data Y

The good news is that both
objectives are equivalent!!
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Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

PCA - Two Operations

Encode Project data onto the principal components

y = WT x for k− th component yk = wT
k x

Decode Reconstruct the projected data

x̃ = Wy =
D′∑

k=1

ykwk
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Finding Linear Projections
Principal Component Analysis
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PCA -Variance Maximization

Given N samples {xn}Nn=1 and xn ∈ RD

Goal
Project data into a D′ < D dimensional space such that the
variance of the projected data is maximized

For simplicity consider D′ = 1

A single projection direction w1

Assume normalized vectors ‖w1‖2 = 1
Orthonormal basis from numerical analysis
Serves to select a single solution among infinite w
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Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

Variance Maximization - Input Space

Compute the means of the input data {xn}Nn=1

x =
1
N

N∑
n=1

xn

Compute the covariance of the input data

S =
1
N

N∑
n=1

(xn − x)(xn − x)T
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Variance Maximization - Projected Data

Compute the means of the projected data as wT
1 x

Compute the variance of the projected data as

1
N

N∑
n=1

{
wT

1 xn −wT
1 x

}2
=

1
N

N∑
n=1

{
wT

1 (xn − x)
}2

=
1
N

N∑
n=1

wT
1 (xn − x)(xn − x)T w1

= wT
1 Sw1
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PCA - Variance Maximization Problem

Goal - Maximizing the variance of the projected data

L = max
w

{
wT Sw

}
subject to the normalization constraint

‖w‖2 = 1

How? Don’t panic! No theoretical explanation. For that you will
need to take the Machine Learning course

Basically, it is an optimization problem that it is solved by
differentiating L to find its maximum
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Finding Linear Projections
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PCA - Variance Maximization Solution

For D′ = 1 the solution is the first principal component w = u1
such that

Su1 = λ1u1

where
λ1 ∈ R is the first eigenvalue of S (i.e. the largest)
u1 ∈ RD is the associate first eigenvector
λ1 is the variance of the projected data, i.e.

λ1 = uT
1 Su1

Maximize the variance⇒ choose eigenvector u with largest
associated eigenvalue λ
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PCA - More Principal Components

What if I want more than 1 projection direction (D′ > 1)?
Choose each new direction wk as one that

Maximizes the variance of projected data
Is subject to the normalization constraint ‖wk‖2 = 1
Is orthogonal to those already selected, i.e. w1, . . . ,wk−1

The solution is in the eigenvectors of the input covariance S
The covariance S of a D-dimensional input space has D
eigenvectors

The eigenvector u1 of the largest eigenvalue λ1 is the first
principal component
The eigenvector u2 of the second-largest eigenvalueλ2 is
the second principal component
The eigenvector u3 of the third-largest eigenvalue λ3 is the
third principal component
. . .
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Finding Linear Projections
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PCA Solution - Eigenvalue Decomposition

The PCA solution reduces to finding the eigenvalue
decomposition of the covariance matrix of input data

S = UΛUT

where
U = [uk]Dk=1 is the D × D matrix of eigenvectors uk

Λ is the D × D diagonal matrix whose diagonal element λk
is the k -th eigenvalue

A D′ < D dimensional projection space is created by choosing
D′ eigenvectors {uk}D

′

k=1 corresponding to the D′ largest
eigenvalues {λk}D

′

k=1
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Practical PCA (I)

Step 1 Organize Data - Put your N samples into a D × N matrix X
Step 2 Compute Means - Calculate the empirical means of your

data

x =
1
N

N∑
n=1

xn

Step 3 Preprocess Data - Subtract means x to each input sample

X = X− x
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Practical PCA (Ia)

Input data Compute means Rescale data
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Practical PCA (II)

Step 4 Compute Covariance - Calculate the covariance of input
data

S =
1
N

XXT

Step 5 Eigenvalue Decomposition - Compute the eigenvalue
decomposition of the covariance

S = UΛUT

where Λ = diag(λ1, . . . , λD) and λ1 ≥ λ2 ≥ · · · ≥ λD

Eigenvalue decomposition can be obtained using standard
vector algebra or numerical routines (e.g. Singular Value
Decomposition (SVD))
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Practical PCA (III)

Step 6 Model Selection - Select D′ < D projection directions,
associated to the first D′ eigenvalues, so as to maximize
the amount of variance retained in the projection

W = UD′

 | . . . |
u1 . . . uD′

| . . . |

 ∈ RD × RD′

Step 7 Encoding - Transform the normalized data X by projecting
it onto the D′ principal components

Y = WT X

where Y ∈ RD′ × RN is a compressed representation of the
input data



Exploratory Analysis
Dimensionality Reduction

Feature Extraction
Conclusion

Finding Linear Projections
Principal Component Analysis
Applications and Advanced Issues

Practical PCA (IIIa)

Principal Components Data projected in the principal
components’ plane
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Projecting New Data

Given N ′ new input samples in X′ ∈ RD × RN′
they can be

projected into the reduced space by
1 Subtracting the means

X′
= X′ − x

2 Projecting onto the known principal components

Y′ = WT X′
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Application Example - Eigenfaces (I)

Each sample xn ∈ RD is a face picture with D pixels

The value of the d-th feature xn(d) is the intensity level of the
corresponding pixel

M. Turk and A. Pentland (1991) Face recognition using eigenfaces Proc. IEEE Conference on Computer Vision and

Pattern Recognition, pp 586-591
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Application Example - Eigenfaces (II)

What is a principal component? Clearly, an eigenface uk

Eigenvectors can be shown as images depicting primitive facial
features
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Application Example - Eigenfaces (III)

We can easily visualize the reconstruction of an image
projected onto its eigenfaces
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How Many Principal Components?

Eigenvalues measure the fraction of variance captured by the
projection

Can be used to define a distortion
measure

Suppose we have selected
K < D principal components
The resulting distortion is

J =
D∑

k=K+1

λk

that is the proportion of
variance neglected by the
projection
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Is Variance so much Informative?
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Linear Discriminant Analysis

Adding supervised class information into the projection function

Linear Discriminant Analysis (LDA)
Perform dimensionality reduction while preserving as much
of the class discriminatory information as possible

Maximum separation
between the means of the
projection
Minimum variance within
each projected class
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Nonlinear Projections

To solve this problem either you un-fold the roll (manifold
approaches) or you change the data representation (kernel
methods)
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Nonlinear Feature Extraction

Signal Representation (Unsupervised)
Manifold learning algorithms: e.g. ISOMAP
Kernel Principal Component Analysis (KPCA)

Classification (Supervised)
Kernel Discriminant Analysis (KDA)
Kernel Canonical Correlation Analysis (KCCA)

Kernels allow to use a linear model for a nonlinear problem

A kernel induces a new space by means of a non-linear
mapping, where the original linear operations can be
performed.
E.g. KPCA performs a linear PCA in the space created by the
kernel rather than in the original data space.
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Take-home Messages

Exploratory data analysis
Find new patterns in data
Formulate new hypotheses

Two key concepts
Curse of dimensionality - Intractable problems
Intrinsic dimension - Data lies in lower dimensional space

Dimensionality Reduction
Feature Extraction - Create new features by combining
input data
Feature Selection - Extract a subset of informative input
dimension

Linear feature extraction⇒ y = Wx
Models differentiate by the criteria used to chose W
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Wrapping up PCA..

PCA is a linear transformation
Defined by the matrix of eigenvectors W of data covariance
S
Preserves as much variance as possible, measured by the
eigenvalues Λ

A general linear transformation produces a rotation,
translation and scaling of the space

PCA rotates the data so that is maximally decorrelated
(orthonormal principal components)

PCA is linear
It cannot fit well curved surfaces
Nonlinear models

PCA does not account for class information
Supervised models (LDA)
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