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ABSTRACT
Regular path queries (RPQ) represent a common and con-
venient way to access and extract knowledge represented as
labeled and weighted data-graphs. In this paper, we look to
enhance the information representation in data-graphs and
RPQs by augmenting their expressive power with the use
of semantically meaningful knowledge in the form of in-
formation granules. We extended a recent distributed algo-
rithm for the evaluation of RPQs on spatial networks by in-
troducing fuzzy weights in place of crisp values both in the
data-graphs and the query formulation. Moreover, we de-
scribe two alternative strategies for determining the costs of
the paths computed by the fuzzy RPQ evaluation process.
A spatial network case-study is used to illustrate the sound-
ness of the approach.
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1 Introduction

The advent of ubiquitous fast networks, cheap storage and
processing cycles allows for the accumulation, organiza-
tion and access of large collections of data. In many ar-
eas such as communications and traffic networks, biolog-
ical data management, cartography and web information
systems, large databases are represented as labeled graphs
for which regular path queries (RPQs) [1] represent a com-
mon and convenient way to access and extract knowledge.
Users can further specify the desired knowledge by ex-
pressing their queries in terms of weighted RPQs (essen-
tially weighted automata), e.g. requesting the cheapest
of the queried paths. Recent work [11, 17, 18] explored
computational aspects of evaluating regular path queries
on large, weighted distributed data-graphs and, in partic-
ular, single and multiple source distributed evaluation, ter-
mination detection, fault tolerance and computation in grid
environments. In this work we further look to enhance the
practicality of extracting information from distributed data-
graphs by augmenting their expressive power with the use
of information granules [13].

For instance, consider the example of a spatial net-
work, e.g., a road map [11]. A typical RPQ for this appli-
cation could specify, among others, the destination, some

intermediate locations and the specific kind of connection
(road) between locations (cities). An RPQ provide us with
enough descriptive power to express a request such as “I
would like to go from Pisa to Florence via Lucca, pass-
ing through a road between Pisa and Lucca, and through a
road or an highway between Lucca and Florence”. One
can further limit the paths returned by the evaluation of
the afore mentioned query by designing a real numbered
weighted RPQ, but this approach is too rigid, lacks con-
venience and will not be able to allow requests such as “I
would like to go from Pisa to Florence via Lucca, pass-
ing through a road between Pisa and Lucca in less than 20
minutes, and through an highway in about 30 minutes or
a road in more than 40 minutes between Lucca and Flo-
rence”.

To allow for such requests we propose to enhance
RPQs with elements of granular computing [13], a the-
ory that deals with operations performed over information
granules, rather than singular and exact values. Granu-
lar computing models the abstraction process of the hu-
man mind, and allows to associate a semantic meaning
to data, i.e., to “compute with words” [10]. In the litera-
ture, many theories dealing with the representation of in-
formation granules have been developed. Fuzzy set theory
(FST) [10] is the most established theory of information
granulation. The basic computational units of FST are the
fuzzy sets, i.e. sets with elements whose degree of mem-
bership ranges in the [0, 1] real interval. For instance, a
fuzzy set can be used to model easily the unprecise time
distances expressed by “less than 20 minutes”, “about 30
minutes” and “more than 40 minutes” in the previous ex-
ample. In our work, we represent information granules in
the form of fuzzy quantities, i.e. fuzzy sets defined over a
real-valued universe of discourse [19].

In the following, we introduce a framework for the
distributed evaluation of fuzzy weighted RPQs over data-
graphs. We first define a basic model that recalls the key
aspects of an algorithm that performs the distributed eval-
uation of single source queries on data-graphs [11, 17].
Then, we present an extended model that exploits fuzzy
weighted automata for querying data-graphs whose edges
are weighted by fuzzy quantities. In particular, we describe
two strategies for determining the costs of the paths com-
puted by the query evaluation process. Finally, we compare
the two strategies on a spatial network example.
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Figure 1. Sample (a) data-graph and (b) RPQ with fuzzy weights.

2 Previous Work

The problem of evaluating fuzzy weighted RPQs on a dis-
tributed data-graph is related to at least three different top-
ics: fuzzy databases, fuzzy shortest path problems, and par-
allel and distributed computation over data-graphs.

Many attempts have been done in the literature to
augment the traditional database models with fuzzy tech-
niques [3, 4]. Most of the previous work focused on the
entity-relations and on the object-oriented models. Work
in the field of fuzzy databases explores many different is-
sues, ranging from the soft evaluation of the matching be-
tween a query and the database content, to the representa-
tion of attributes via fuzzy concepts [4]. For instance, [3]
details a classification of the possible attribute representa-
tions by means of FST. Our model gathers inspiration from
both approaches, defining a soft matching procedure that
compares fuzzy query descriptions with the fuzzy concepts
in the database.

Another topic related to data-graph’s weights granula-
tion is the fuzzy shortest path problem (FSPP) [8, 12]. This
topic has been deeply analyzed: it mostly consist in aug-
menting the weights of a graph with fuzzy quantities rather
than crisp values, and in expanding algorithms for the eval-
uation of shortest paths on such graphs. The conversion
from crisp numbers to fuzzy quantities leads to some diffi-
cult theoretical problems that make the search for efficient
algorithms difficult.

A number of recent works [1, 9, 16, 11, 17, 18] dealt
with different aspects of parallel and distributed evaluation
of RPQs on graph databases. The algorithms presented in
[1, 16] use unweighted data-graphs and their generaliza-
tion is not immediate. The approach of [9] describes a par-
allel implementation of shortest path on data-graphs and
discusses practical techniques for improving performance.
The works of [17, 18] develop algorithms for the single
and multiple source distributed evaluation of real numbered
weighted RPQs on data-graphs, while [11] discusses prac-
tical aspects of distributed generalized query evaluations in
grid environments.

3 The Basic Model

Let us consider a data-graph DB that can be represented as
a weighted and labeled graph DB = (V,E,∆, K), where
V = {o0, . . . , oN} is the set of vertices representing data-
graph objects and E ⊆ V ×∆×K×V is the set of edges.
The signature ∆ defines an alphabet of symbols in a spe-
cific domain. For instance, in the domain of spatial net-
works, values in ∆ can be road to Ci, highway to Ci, free-
way to Ci, etc. The weight set K contains elements in the
domain knowledge associated to the edges. More formally,
a graph edge ej = (oj , δj , ωj , o

′
j) represents a relationship

between objects oj and o′j , identified by the label δj ∈ ∆
and tied to the domain knowledge associated to the infor-
mation granule ωj ∈ K. Figure 1(a) shows a sample spatial
network weighted by fuzzy quantities that model approxi-
mate time distances.

The weights ωj defined over K are used to compute
a cost c(π) of each path π = e0 . . . ej . . . eF , starting from
vertex o0 and ending at vertex oF . In the extended model
the cost c(π) will be computed in a general domain C,
whose nature depends on the specific application. We as-
sociate with domain C a relation �C denoting an ordering
between the costs paths in C as determined by an aggre-
gation cost sum operator ⊕C : C × C → C. For the ba-
sic model, we set K ≡ C: hence the total cost of a path
π = e0 . . . eF can be calculated as the summation of the
edge weights along the given path

c(π) = ω0 ⊕C · · · ⊕C ωj · · · ⊕C ωF . (1)

In the settings of [11, 17], both weights and costs are real
numbers, modeling, e.g., the length in miles of a road and
the total length of the trip. Formally, we have K ≡ C ≡ R:
hence, the cost sum ⊕C is the real +R operator, while �C
is the standard ordering relation ≤R between reals.

An RPQ on such a DB is described by a finite state
automaton (FSA) A = (P,∆, τ, p0, PF ), where P is a fi-
nite set of states, ∆ is the signature, τ is the transition
relation, p0 is the initial state, and PF is the set of final
states. Each edge in the automaton identifies a query term
and every path leading from the initial state p0 to a final



state pf ∈ PF determines an admissible instance of the
query, i.e., an acceptable path.

The original algorithm looks for the cheapest accept-
able paths defined by an RPQ A over a DB distributed
among machines in a grid environment [11]. The algo-
rithm starts from the root vertex o0 and proceeds by incre-
mentally building the set of optimal acceptable solutions
in a distributed fashion. Each time a new (partially) ac-
ceptable path π∗

RPQ is matched on the graph, its (partial)
cost c(π, π∗

RPQ) is computed by aggregating the costs of
the edges via ⊕C. Here, π∗

RPQ denotes any admissible par-
tial or complete path of the RPQ A. If the newly matched
π∗

RPQ is better than the (possibly) already existing one,
then π∗

RPQ replaces the previous partial path in the set of
optimal acceptable solutions. Evaluation of the cheapest
path is performed via �C. At each time instant, each ma-
chine of the grid is aware of the best partial solutions dis-
covered until then that reach at least one vertex stored in its
local memory. Although the algorithm is based on a greedy
strategy, it is shown to return the optimal complete paths
[11, 17]. Furthermore, the algorithm includes techniques
to deal with fault recovery and termination detection over
the whole grid. Due to lack of space, we do not report the
full algorithm, whose details can be found in [11].

In the next section, we introduce a generalized version
of the RPQ matching algorithm that extends the model to
distributed querying on DB graphs weighted by informa-
tion granules. In particular, we derive the conditions under
which we can generalize the results obtained in [11, 17] for
real-valued weights, to fuzzy edge coefficients. With this
respect, we specify the properties of the cost set C, the sum
⊕C and the ordering relation �C.

4 The Extended Model

As stated above, in our extended model, both data-graphs
and RPQs are weighted by fuzzy quantities for enhancing
their expressive power. The algorithm is generalized so as
to perform a semantic matching of the information granules
defined over the RPQ paths against the knowledge stored
in the DB and to compute on-the-fly the actual c(π), by
using a measure of dissimilarity between the DB and RPQ
weights. In this extended model, a fuzzy weighted RPQ is
represented by a weighted FSA A = (P,∆, τ, K, p0, PF ),
where K identifies the set of the edge weights and τ is a
transition relation such that τ ⊆ P ×∆×K× P .

A simple example of an RPQ weighted by fuzzy
quantities is shown in Fig. 1(b). Obviously, the charac-
teristics of the weight set K depend on the kind of infor-
mation granulation that is chosen for knowledge represen-
tation. In our particular setting, K is a semi-ring whose
elements are fuzzy quantities defined over a bounded uni-
verse of discourse X ⊂ R [2], with commutative sum ⊕
and distributive product⊗ implementing the fuzzy union ∪
and intersection ∩ operators, respectively. We refer to this
semi-ring as F . In the light of this fuzzy interpretation, we
associate each fuzzy quantity ki ∈ F to a linguistic term ti

(e.g. t1 = about 5 mins) by means of a mapping function
M : T → F , such that M(ti) = ki. We remark that the
use of this association allows to enforce the transparency
and interpretability of the model by using meaningful lin-
guistic terms in place of mathematical notations. In par-
ticular, the linguistic approach can be exploited to generate
articulated fuzzy descriptions by applying linguistic modi-
fiers [10] (such as “less than”) to the primitive fuzzy sets,
such as “about 20 minutes”. Linguistic hedges have a clear
mathematical formulation and act by modifying the shape
of the fuzzy sets to which they are applied. Therefore, it is
possible for the user to reason using only linguistic terms
and modifiers, thus hiding the complexity of the underlying
mathematics.

In [3], the authors proposed an off-the-shelf set of
fuzzy data types to represent attribute values in databases.
The datatypes map linguistic expressions to fuzzy sets in
a standard way. In the following, we will exploit them to
represent information granules associated to graph edges.

To make the model clearer, consider the RPQ in
Fig. 1(b): its weighted automaton is described by the
state set P = {p0, p1, p2, p3}, the signature ∆ =
{freeway to C1, road to C2, . . . }, the initial state p0, the fi-
nal state set PF = {p3}, and by the transition relation τ =
{(p0, highway to C3, k1, p3), . . . , (p2, freeway to C3,k5,
p3)}, where {k1 = M(less than 20 mins), . . . , k5 =
M(more than 20 mins)} defines the mapping between the
linguistic terms and the fuzzy weights ki ∈ F .

Clearly, the three alternative paths defined by the RPQ
in Fig. 1(b) over the spatial network of Fig. 1(a) are all ac-
ceptable. As stated above, from an information-granulation
point-of-view, the challenge relies in discerning which of
the three alternatives is the most similar to the request,
i.e., in performing the semantic matching of the paths. To
this aim, we exploit the notion of similarity of information
granules [6], i.e., we use a similarity index to compute a
dissimilarity measure cij = Sim(ki, ωj) : K × K → C
between each weight ωj of the acceptable path on the
DB and the corresponding weight ki of the RPQ. Each
time a new partial path is discovered by the algorithm, the
dissimilarity measure between the weights of the match-
ing edges is computed on-the-fly in the domain C. Con-
sider, for instance, the matching between the RPQ path
πRPQ = t0 . . . ti . . . tF ′ and the corresponding, acceptable,
DB-graph path π = e0 . . . ej . . . eF . The total matching
cost of (π, πRPQ) is then calculated as

c(π, πRPQ) = c00 ⊕C · · · ⊕C cij · · · ⊕C cF ′F . (2)

The choice of the similarity index is dictated by the
restrictions placed on the cost domain C and on the related
binary operators. In particular, we require (C,⊕C) to be
an additive semigroup, where C is a set closed under the
associative and commutative sum operator ⊕C. Moreover,
we require C to be an ordered semigroup [5] equipped with
a complete ordering relation �C satisfying the isotonicity
property, that is, for all a, b, c ∈ C it holds

a �C b ⇒ (a⊕C c �C b⊕C c)∧ (c⊕C a �C c⊕C b). (3)



In addition, we require C to have an identity element 0C
acting as left and right neutral element of ⊕C: hence, C is
an ordered monoid.

Under the conditions described so far, we can seam-
lessly extend the distributed RPQ matching algorithms in
[11, 17] to the more general case of fuzzy-weighted data-
graphs. In this approach, the crisp-valued edge costs are
substituted with elements from the monoid C, while the
aggregated costs are computed using the sum operator ⊕C
and the minimum cost conditions are determined by means
of the order relation �C. Notice that the very nature of dis-
tributed computing requires the isotonicity property in (3)
which becomes the most critical of the six desirable prop-
erties identified by Wang and Kerre [19] in their study on
ordering relations of fuzzy quantities.

The final form of the semigroup C is determined by
the implementation of the cost sum operator. For instance,
if⊕C is chosen as a the average sum over the elements in C,
then ∀a ∈ C we have a ⊕C a = a, i.e. idempotency holds
for every element of the semigroup and, therefore, C is a
semi-lattice. On the other hand, if ⊕C is implemented as
the standard summation operator we have that a �C a⊕C a
and C is a positive ordered semigroup [5].

Until now we have focused on the definition of a gen-
eral framework that allows to derive sound instances of the
triplet Q = (K, C,Sim). In the remainder of the work,
we analyze two alternative formulations, restricted to the
special case K ≡ F .

4.1 Early Defuzzification

The early defuzzification approach is a seamless extension
of the one proposed in [11]. We calculate the dissimilarity
between the RPQ and the data-graph weights as a crisp-
valued cost. To this aim, we exploit the well-known set-
theoretic Jaccard index [6], which computes a crisp mea-
sure of similarity between two fuzzy quantities. More pre-
cisely, we set:

• C = U , with U = [0, 1] ⊂ R, ⊕C = +̃R and �C =
≤R. The cost sum +̃R is the average operation over
reals, i.e. given x, y ∈ U , we have x +̃R y = 1/2 ·
(x +R y);

• Sim(k1, k2) : F × F → U = SimJ(k1, k2) = 1 −
SimJ(k1, k2), where SimJ(k1, k2) is the Jaccard in-
dex computed on the two fuzzy quantities k1, k2 ∈ F .
We recall that

SimJ(k1, k2) = |k1 ∩ k2|/|k1 ∪ k2|. (4)

Instantiating ⊕C to the average operator +̃R serves
to unbias cost aggregation with respect to the path length.
Alternatively, if we intend to penalize longer paths as in
[11, 17], we can define the ⊕C operator as the sum +R.

In this approach, the defuzzification step, i.e. the
transformation of the fuzzy representation into a single
crisp value, is performed by the Sim operator each time

the edge cost cij is computed on-the-fly. The early defuzzi-
fication approach can be implemented easily, but it has the
drawback of loosing too early much of the knowledge rep-
resented by the information granules.

4.2 Late Defuzzification

In the late defuzzification approach, we delay the transfor-
mation of the information granules into crisp values until
the evaluation of c(πa, π∗

RPQa) �C c(πb, π
∗
RPQb) is per-

formed by the distributed algorithm between two matching
partial paths. To this aim, we require the edge costs cij

and the path costs c(π, π∗
RPQ) to be fuzzy quantities: thus,

we need an index that assesses dissimilarity of information
granules in terms of fuzzy sets rather than crisp values, i.e.,
a fuzzy-valued dissimilarity measure. Hence, we define:

• C = FU , with ⊕C = +̃F and �C=≤F . FU ⊂ F is
the set of fuzzy sets defined on the interval U . The cost
sum +̃F is the fuzzy extension of the average opera-
tion over reals +̃R, computed using fuzzy arithmetics
as

µk̃1+̃F k̃2
(z) = sup

z=x+̃Ry

min
(
µk̃1

(x) , µk̃2
(y)

)
, (5)

where x, y, z ∈ U , k̃1, k̃2 ∈ FU , and µk̃i
(x) : U → U

is the membership function that defines the degree of
memberships of the fuzzy quantity k̃i on U [15]. The
≤F is an ordering relation of fuzzy quantities [19],
properly chosen so as to enforce the ordered semi-
group condition of Section 4;

• Sim(k1, k2) : F × F → FU is a fuzzy evaluation of
the dissimilarity of two fuzzy quantities.

The definition of Sim and of �C is not immediate, as
it requires a sound choice of ≤F among the many alterna-
tive options in the literature [19], as well as the definition
of a proper Sim.

To the best of our knowledge, the only approach to
fuzzy-valued similarity of fuzzy quantities has been intro-
duced by Dubois and Prade [6, 7]. The proposed approach
builds the fuzzy-valued similarity by evaluating the Jaccard
index on the sets obtained by α-cutting the fuzzy quantities
being compared. We recall that an α-cut of a fuzzy quan-
tity k is the crisp set kα = {x|µk(x) ≥ α}, with α ∈ [0, 1].
The value of the Jaccard index is then used as the mem-
bership degree of α. Hence, given two fuzzy quantities k1

and k2, the fuzzy-valued similarity SimDB is built on U as
µSimDB(α) = SimJ(k1α, k2α). Two equal fuzzy quantities
k1 = k2 are evaluated to 1̃DB, with µ1̃DB

(x) = 1, ∀x ∈ U ,
while two completely different fuzzy quantities k1∩k2 = ∅
are evaluated to 0̃DB, with µ0̃DB

(x) = 0, ∀x ∈ U . We re-
mark that 0̃DB ⊆ k̃ ⊆ 1̃DB holds ∀k̃ ∈ FU .

The fuzzy-valued index of similarity introduced by
Dubois and Prade cannot be effectively exploited in our ap-
proach to build Sim. Indeed, most of the existing ordering
relations of fuzzy quantities ≤F are not able to correctly



Table 1. Edge-cost comparison of the early and late defuzzification approaches for the evaluation of the RPQ of Fig. 1.

ki ωj Fuzzy quantities
cij

Q = (F , U, SimJ) Q = (F ,FU ,SimOFM)

k1 ω1(o0
hway C3−→ o3) 0.9231

k2 ω2(o0
fway C1−→ o1) 0.7500

k3 ω3(o1
road C2−→ o2) 0.7500

k4 ω4(o1
fway C2−→ o2) 0.5556

k5 ω5(o2
fway C3−→ o3) 0.7778

Table 2. Path-cost comparison of the early and late defuzzification approaches for the evaluation of the RPQ of Fig. 1.

(π, πRPQ) τ
c(π, πRPQ)

Q = (F , U, SimJ) Q = (F ,FU ,SimOFM)

(πa, πRPQa) p0
hway C3−→ p3 0.9231

(πb, πRPQb) p0
fway C1−→ p1

road C2−→ p2
fway C3−→ p3 0.7593

(πc, πRPQc) p0
fway C1−→ p1

fway C2−→ p2
fway C3−→ p3 0.6945

Figure 2. Fuzzy sets k̂1 (solid) and k̂2 (dotted).

recognize 1̃DB as the supremum element of FU . For in-
stance, let us consider the fuzzy quantities k̂1 and k̂2 shown
in Fig. 2. Clearly, k̂1 and k̂2 are not equal. As an example,
we choose Yager’s second index [20] Y2 to assess the or-
dering between SimDB(k̂1, k̂2) and 1̃DB. As proven in [19],
Y2 enforces the isotonicity property required in Section 4.
We recall the definition of Y2

Y2(k) : F → R =
∫ 1

0

sup(kα) + inf(kα)
2

dα. (6)

By definition, we have that Y2(k1) ≤R Y2(k2) ⇒ k1 ≤F
k2. But then we have 1̃DB ≤F SimDB(k̂1, k̂2) since it
can be easily verified that (Y2(SimDB(k̂1, k̂2)) = 0.6055 ∧
Y2(1̃DB) = 0.5). This trivial example proves that SimDB is
not a good choice for our approach. In the application ex-
ample of Section 5, we employed an ordered fuzzy-valued
dissimilarity measure SimOFM built upon two crisp-valued

similarity measures, i.e., the the set-theoretic Jaccard in-
dex SimJ of Eq. (4) and the proximity-based Minkowski
1-metric SimM [6], computed as

SimM (k1, k2) = 1−
∫

X
|µk1 (x)− µk2 (x)| dx∫

X
dx

. (7)

SimOFM is a triangular fuzzy quantity with core in
SimJ(k1, k2). Triangle extremes are computed by

∫
U

SimOFM(k1, k2)dx =
1
2
· (1− SimM (k1, k2)). (8)

A formal analysis of such measure is beyond the scope of
the this paper, but, roughly speaking, the proximity-based
index is used to assess the uncertainty of the dissimilarity
measured by the set-theoretic index. The infimum and the
supremum elements 0̃OFM and 1̃OFM are the singletons in 0
and 1, respectively. More formally, we have µ1̃OFM

(1) = 1
and µ1̃OFM

(x) = 0 ∀x 6= 1, and similarly for µ0̃OFM
(x). We

remark that, choosing Y2 as ≤F , 0̃OFM ≤F k̃ ≤F 1̃OFM

holds ∀k̃ ∈ FU .



5 Application Example

We applied both the early and late defuzzification ap-
proaches on the matching paths resulting from the evalua-
tion of the RPQ in Fig. 1(b) over the DB in Fig. 1(a). Table
1 shows the comparison between the edge costs computed
by using the two approaches. Table 2 shows the aggregated
results over the three alternative acceptable complete paths.

Both approaches recognize πRPQc
as the cheapest

path, i.e. the most similar to the user request. However,
the late defuzzification approach is able to characterize
more sharply the actual semantic difference between the
information granules associated with the query and with
the DB. For instance, consider the edge costs c22 and
c33: in early defuzzification the costs are identical, whereas
late defuzzification produces a wider support for c33, tak-
ing into account the larger difference between the support
widths of k3 and ω3 with respect to k2 and ω2. This can be
interpreted as an higher degree of fuzzyness in the evalua-
tion of the cost.

A further analysis of the different effects produced by
the early and the late defuzzification approaches on large
data-graphs will be subject of future works.

6 Conclusion

Dealing with semantically meaningful representations of
knowledge is a key challenge for the development of inno-
vative database applications. In this work, we introduced
a general framework for the distributed evaluation of fuzzy
weighted RPQs on data-graphs whose semantics is char-
acterized by means of information granules. In particular,
we detailed the application of this framework to the design
of an algorithm for the distributed mining of fuzzy data-
graphs.

The theoretical issues concerning the properties of the
fuzzy ordering and similarity operator deserve further stud-
ies. In particular, we intend to analyze the retrieval perfor-
mance of the algorithm with respect to different choices
of such operators. It would also be interesting to instan-
tiate the model to information granules that have different
(non-fuzzy) representations. For instance, we plan to study
the general case of K as a multi-dimensional space, that is
K ⊆ K1 × K2 × ... × Kn, where each Ki identifies a dif-
ferent domain knowledge, each represented by information
granules of a (possibly) different type. This problem could
be addressed by exploiting the recent results on the evalu-
ation of proximity in heterogenous spaces [14]. On a more
practical side, we intend to evaluate the performance of the
two defuzzification strategies described in Section 4, with
respect to distributed data-graph querying, as done in [11].
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