
Clock Phase Change compensation
using Graham Scan

Augusto Ciuffoletti
Università di Pisa

Galina Antonova
GE Consumer & Industrial, Multilin

Problem statement

● Ensuring high timing accuracy for Slave
clocks built with cheap oscillators requires
frequent updates from the Master clock.

● Clock Phase Change linear compensation
may significantly reduce updates’ frequency,
while maintaining required timing accuracy.

● Temperature and aging (non linear)
components of the Clock Phase Change
remain to be compensated.

Graham Scan requirements

● The algorithm requires that a Slave clock
receives series of timestamped messages
from a Master.

● Although the message flow should be
regular, no strict timeliness is required.

● Such messages do not need special
privileges, but regularity in the delivery
helps.

Probabilistic issues

● The algorithm makes (weak) hypotheses on
the distribution of message latency.

● The algorithm returns an estimate of the
Clock Phase Change, not the “real” value.

● Accuracy of such estimate improves for
longer series of messages.

● The algorithm improves performance of a
clock synchronization algorithm, but does
not replace it.

Advantages

● Low cost/impact algorithm.
● Adequate to a wireless environment: Slave

does not transmit thus saves power.
● Adequate to a broadcast/multicast environ-

ment: one message serves multiple Slaves.
● May be sufficient (no additional clock

synchronization needed) for applications that
only need to measure time intervals (e.g.
monitoring, accounting, debugging).

Basic notation

where
ts() - message send and receive timestamps,
 based on local clock;
 - real message latency;
a - a linear component of the Clock Phase Change;
b - a constant component of the Clock Phase Change.

tsrcvi−ts snd i=ia∗ts snd ib

i

Timestamp difference plot

Derived from simulation

Clock Phase Change Interpolation

• To compute a constant term of Clock Phase Change,
two values for index i are required, such that two
real message latencies are identical.

• Based on experience two minimal values of message
latency in a sample are likely close.

tsrcvi−ts snd i=ia∗ts snd ib

Message latency distribution

Derived from Auckland traces

Finding the minimals

Points with minimal
delay necessarily
correspond to adjacent
vertices of the (lower)
hull containing a
timestamp difference
graph.

Proof: classical, by absurd.

Derived from Auckland traces

The Graham Scan
@hull->empty;

while <($snd,$rcv)> {

$new=($snd,($rcv-$snd));

while (test($hull(N),$hull(N-1),$new)){ pop @hull }

push $new,@hull;

}

● the test function test computes and compares the slopes of
the segments ($hull(N-1),$hull(N)) and ($hull(N-
1),($snd,$rcv));

● the number of elements in $hull grows logarithmically with
time.

Summarizing cost per time unit grows logarithmically with time.

Graham Scan

time
t i

A set of points, representing timestamp differences

Graham Scan

time
t i

The convex hull

Graham Scan

timet i1

A new point is added to the set

Graham Scan

timet i1

The slope to the last point in the hull is computed

slope is negative

Graham Scan

timet i1

The point is eliminated from the convex hull

this point popped from convex hull

Graham Scan

timet i1

Compute slope to next point

slope is positive

Graham Scan

timet i1

New point is pushed in the stack; exit.

Selecting the minimals

Selection rule:

select edges with
farther sampling time
in $hull

– rationale:
● minimizes worst case error of the estimate
● easy to compute

– more investigation needed

Evaluating estimate accuracy

● Depends on communication delay distribution
● Increases with sample size
● May be deceived by relevant non-linear

(temperature driven) Clock Phase Changes
● May be deceived by interfering clock

adjustments

A simulation enlightens long run aspects of the
Clock Phase Change estimation algorithm.

Simulation basics

A key is our generator of round-trip delays.
Our generator is fast and
simulates long range
dependence.

It is tuned on Auckland samples and
introduces thermal variations.

Derived from Auckland traces

Our generator

Results: accuracy after
stabilization

120 samples are
generated with a Clock
Phase Change of 0.1
parts per thousand (100
times better than a quartz
clock) with periodic
thermal shift.

Estimate is read the first
time the algorithm
stabilizes (small variation
of successive estimates).

N
u

m
b

e
r

o
f

e
xp

e
rim

e
n

ts

Clock Phase Change estimate

Results: time to converge

Stabilization occurs
when variation of
successive estimates
is small.

At 1 ping per second
stabilization is reached
after 20 minutes.

N
um

be
r

of
 e

xp
er

im
en

ts

Time units (before stabilization)

Conclusions

● Clock Phase Change compensation
improves performance of clock
synchronization.

● An efficient algorithm may significantly
reduce Master to Slave updates’ frequency,
while maintaining required timing accuracy.

● Graham Scan algorithm offers an efficient
low cost/impact solution.

Conclusions (continued)

● Clock Phase Chance compensation using
Graham Scan brings savings in

- Cost (by using cheaper oscillators),
- Utilized bandwidth (by less frequent

messages) and
- Power consumption (by using one-way

messages).
● Temperature/ageing component remains to

be compensated.

References

● Moon, Skelley, Towsley “Estimation and Removal of Clock Skew

from Network Delay Measurements”, TR98-43, Univ. of

Massachusetts at Amherst.

● Cristian “Probabilistic Clock Synchronization”, Distributed

Computing, 1989

● de Berg, van Kreveld, Overmars, Schwarzkopf Computational

Geometry, pag 1-8, Springer 98.

● http://search.cpan.org/~augusto/Time-Skew-0.1/Skew.pm

Design of a One Way Jitter
estimator

● One way delay (from previous formula) is:

i−i−1=tsrcvi−tsrcvi−1−1a tssnd i−tssnd i−1

i=tsrcvi−tssnd i−a∗tssnd ib

As a consequence:

Therefore we conclude that only Clock
Phase Change is needed to compute
one-way drift.

A tool for OW jitter
measurement

The protocol centers around three types of
packets:
● open: request of authorization to ping;
● reply: contains authorization and parameters;
● fwd: measurement messages (timestamped).

openopen fwd

reply

source

target

JaMeter: a prototype

JaMeter is a monitoring tool that measures OW
jitter both forward and backward.
● originally designed to measure asymmetry in
the jitter (JA stands for jitter asymmetry);
● can produce results either on a dedicated
MySql database, or on the stdout;
● currently deployed as part of GlueDomains

