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Problem statement

● Ensuring high timing accuracy for Slave 
clocks built with cheap oscillators requires 
frequent updates from the Master clock.

● Clock Phase Change linear compensation 
may significantly reduce updates’ frequency, 
while maintaining required timing accuracy. 

● Temperature and aging (non linear) 
components of the Clock Phase Change 
remain to be compensated.



Graham Scan requirements

● The algorithm requires that a Slave clock 
receives series of timestamped messages 
from a Master.

● Although the message flow should be 
regular, no strict timeliness is required.

● Such messages do not need special 
privileges, but regularity in the delivery 
helps.



Probabilistic issues

● The algorithm makes (weak) hypotheses on 
the distribution of message latency.

● The algorithm returns an estimate of the 
Clock Phase Change, not the “real” value.

● Accuracy of such estimate improves for 
longer series of messages.

● The algorithm improves performance of a 
clock synchronization algorithm, but does 
not replace it.



Advantages

● Low cost/impact algorithm.
● Adequate to a wireless environment: Slave 

does not transmit thus saves power.
● Adequate to a broadcast/multicast environ-

ment: one message serves multiple Slaves.
● May be sufficient (no additional clock 

synchronization needed) for applications that 
only need to measure time intervals (e.g. 
monitoring, accounting, debugging).



Basic notation

where 
ts() - message send and receive timestamps, 
         based on local clock;
      - real message latency;
a    - a linear component of the Clock Phase Change;
b    - a constant component of the Clock Phase Change.

tsrcvi−ts snd i=ia∗ts snd ib

i



Timestamp difference plot

Derived from simulation



Clock Phase Change Interpolation

• To compute a constant term of Clock Phase Change, 
two values for index i are required, such that two 
real message latencies are identical.

• Based on experience two minimal values of message 
latency in a sample are likely close. 

tsrcvi−ts snd i=ia∗ts snd ib



Message latency distribution

Derived from Auckland traces



Finding the minimals

Points with minimal 
delay necessarily 
correspond to adjacent 
vertices of the (lower) 
hull containing a 
timestamp difference 
graph.

Proof: classical, by absurd.

Derived from Auckland traces



The Graham Scan
@hull->empty;

while <($snd,$rcv)> {

$new=($snd,($rcv-$snd));

while (test($hull(N),$hull(N-1),$new)){ pop @hull }

push $new,@hull;

}

● the test function test computes and compares the slopes of 
the segments ($hull(N-1),$hull(N)) and ($hull(N-
1),($snd,$rcv));

● the number of elements in $hull grows logarithmically with 
time.

Summarizing cost per time unit grows logarithmically with time.



Graham Scan

time
t i

A set of points, representing timestamp differences



Graham Scan

time
t i

The convex hull



Graham Scan

timet i1

A new point is added to the set



Graham Scan

timet i1

The slope to the last point in the hull is computed

slope is negative



Graham Scan

timet i1

The point is eliminated from the convex hull

this point popped from convex hull



Graham Scan

timet i1

Compute slope to next point

slope is positive



Graham Scan

timet i1

New point is pushed in the stack; exit.



Selecting the minimals

Selection rule:

select edges with 
farther sampling time 
in $hull

– rationale: 
● minimizes worst case error of the estimate
● easy to compute

– more investigation needed



Evaluating estimate accuracy

● Depends on communication delay distribution
● Increases with sample size
● May be deceived by relevant non-linear 

(temperature driven) Clock Phase Changes
● May be deceived by interfering clock 

adjustments

A simulation enlightens long run aspects of the 
Clock Phase Change estimation algorithm.



Simulation basics

A key is our generator of round-trip delays.
Our generator is fast and 
simulates long range 
dependence.

It is tuned on Auckland samples and 
introduces thermal variations.

Derived from Auckland traces

Our generator



Results: accuracy after 
stabilization

120 samples are 
generated with a Clock 
Phase Change of 0.1 
parts per thousand (100 
times better than a quartz 
clock) with periodic 
thermal shift.

Estimate is read the first 
time the algorithm 
stabilizes (small variation 
of successive estimates).
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Results: time to converge

Stabilization occurs 
when variation of 
successive estimates 
is small.

At 1 ping per second 
stabilization is reached 
after  20 minutes.
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Conclusions

● Clock Phase Change compensation 
improves performance of clock 
synchronization.

● An efficient algorithm may significantly 
reduce Master to Slave updates’ frequency, 
while maintaining required timing accuracy. 

● Graham Scan algorithm offers an efficient 
low cost/impact solution.



Conclusions (continued)

● Clock Phase Chance compensation using 
Graham Scan brings savings in

- Cost (by using cheaper oscillators),
- Utilized bandwidth (by less frequent 

messages) and 
- Power consumption (by using one-way 

messages). 
● Temperature/ageing component remains to 

be compensated.
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Design of a One Way Jitter 
estimator

● One way delay (from previous formula) is:

i−i−1=tsrcvi−tsrcvi−1−1a tssnd i−tssnd i−1

i=tsrcvi−tssnd i−a∗tssnd ib

As a consequence:

Therefore we conclude that only Clock 
Phase Change is needed to compute 
one-way drift.



A tool for OW jitter 
measurement

The protocol centers around three types of 
packets:
● open: request of authorization to ping;
● reply: contains authorization and parameters;
● fwd: measurement messages (timestamped).

openopen fwd

reply

source

target



JaMeter: a prototype

JaMeter is a monitoring tool that measures OW 
jitter both forward and backward.
● originally designed to measure asymmetry in 
the jitter (JA stands for jitter asymmetry);
● can produce results either on a dedicated 
MySql database, or on the stdout;
● currently deployed as part of GlueDomains


