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Abstract

In a distributed system where scalability is an issue, like in a GRID [5], the problem of enforcing
mutual exclusion often arises in a soft form: the infrequent failure of the mutual exclusion predicate
is tolerated, without compromising the consistent operation of the overall system. For instance this
occurs when the operation subject to mutual exclusion requires massive use of a shared resource.

We introduce a scalable soft mutual exclusion algorithm, based on token passing: one distin-
guished feature of our algorithm is that instead of introducing an overlay topology we adopt a
random walk approach.

The consistency of our proposal is evaluated by simulation, and we exemplify its use in the
coordination of large data transfers in a backbone based network. Keywords: congestion avoidance,
random walk, token circulation, self-stabilization, soft mutual exclusion.

1 Introduction

In an ideal distributed system there are no centralized resources, all of them being equivalently able to
play any role. However, in practical applications, it is often the case that the introduction of a centralized
resource may be appropriate, in order to reduce the cost, or to improve the performance. The loss of
scalability and fault tolerance, which is inherent to the introduction of a centralized resource, is accepted
as a tradeoff.

For instance, consider the communication infrastructure of a network: be it geographical, or located
inside a building, it will probably be based on a backbone. Although this may be replicated for fault
tolerance, nonetheless it will break the symmetry of the system.

Components of a large distributed system may need to regularly perform operations that require a
relevant share of such centralized resources: for instance, peripheral components may want to update
local caches of data from a database, or upgrade local software by downloading new revisions from
remote mirrors, or simply renew their credentials. In a system that wants to scale, the performance of
such operations should not be tightly bound: occasional congestion of the centralized resource should
produce a tolerable degradation of the high level service running at the edge.

In order to keep congestion an occasional event, applications must be equipped with a congestion
avoidance mechanism. Such mechanism should coordinate the access to the centralized resource so that
congestion is avoided as long as the overall load is nominal. When requests overtake the capacity of the
resource, it should reproduce at the edge the effect of a congestion, but without stress for the centralized
resource.

One key requirement for a congestion avoidance mechanism is that it must not introduce bounds on
system size: this excludes the adoption centralized algorithms, that are not scalable, as well as distributed
algorithms based on deterministic consensus, that have an heavy footprint.

Summarizing, unlike traditional mutual exclusion, modeled by a concurrent write on a shared register,
our problem statement includes the occasional occurrence of simultaneous instances of the protected

operation. This is due to the nature of the controlled operation whose performance may degrade when
many are executed simultaneously, but without damage for the consistency of the system. This is formally
translated in the following definition:
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Requirement 1 A soft mutual exclusion algorithm for the protected operational A ensures that at any

time, with high probability, there is just one component enabled to perform A. The probability that more

than one component is enabled falls exponentially in the number of enabled components.

We propose a simple distributed algorithm that implements soft mutual exclusion. The algorithm
falls into the peer to peer family, since there is no centralized agent, and all participants run the same
code. The result is the circulation of a token, ensuring that, with high probability, exactly one token
is present in the system. We do not assume a fixed topology or a preliminary overlay design phase (as
in [9], aimed at multicast). The token is circulated according to a random walk concept, that can be
tailored to run on any topology. We evaluate its performance in a full mash that represents the transport
level of the Internet. Formal results (see [8]) justify the claim that our algorithm may be of interest also
in networks with an average degree comparable with log N , where N is the number of components in
the system.

The algorithm relies on the knowledge of the membership of components that may execute the pro-
tected operation. Here we do not introduce a solution to the membership problem, but propose a way to
regulate access to a shared resource once the membership is established. However, we insist on the fact
that the knowledge of the membership on each component may be limited to O(log(n)) other components,
randomy selected.

The relationships with Dijkstra’s (deterministic) self-stabilization [4] are evident: however, instead of
using the knowledge of neighbor’s state, we enforce mutual exclusion using time constraints computed
locally. We share with some randomized self-stabilizing algorithms the basic idea of performing random
moves in order to compensate lack of information. Our approach may be regarded as an evolution of [6]:
with respect to that work, we introduce a probabilistic definition of closure, since the token management
scheme may itself induce divergence from stable operation. Such event occurs with low probability, and
the algorithm autonomously recovers. As for the token elimination rule, the probability of collision is
augmented by widening the collision window so that recovery is substantially improved with respect to
[6].

Although many topics discussed in this paper have been individually treated in formal papers, here
we prefer a simulation approach: this is motivated by the fact that the solution we introduce uses a
combination of techniques, and this makes unapproachable a formal evaluation. Whenever appropriate,
we will make reference to formal works that motivate the framework of our approach.

2 Establishing a benchmark: random access

To have a sort of reference, we introduce a straightforward solution to the problem of granting access
to a shared resource without a centrilized control: each component issues a service request periodically,
without any form of coordination. The period between two successive requests is based on a system wide
period ∆min perturbated by a random bias, chosen in the interval [0, ∆min/2], which is introduced to
break synchronous behaviors.

From a simulation lasted 106 time units, assuming that all instances of the protected operation take 4
time units to complete (∆op = 4) and with ∆min = 600, we understand that such algorithm is a low end

solution to the soft mutual exclusion problem: in figure 2, the number of time units during which more
than one protected operation is running falls exponentially with the number of simultaneous operations
(see benchmark histograms). We performed two distinct simulations to show how the performance of
such solution scales up when we step from a nominal workload (N = 150) to an overload (N = 300).

As we see, the number of concurrent operations is hardly acceptable, and the system has no way to
adapt itself when the size of the membership scales up. This motivates our interest for a better algorithm,
with a light footprint on system load.

3 System model and the wandering token basics

The system is composed of a set of N components, interconnected by a complete mesh of links: for each
couple of components (ci, cj) there is a link li,j that connects them. This simple model is meant to
represent a transport level view of the Internet.
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We do not assume sharply synchronized clocks, but their drift should be reasonably low: hypotheses
on local timing are not critical, and will be explained in section 4.2.

All components run the same algorithm, which basically consists in receiving a token, possibly per-
forming the protected operation, and finally passing the token to another component: only exceptionally
a component may perform compensation actions (described below) to enforce the presence of a unique
token in the system. The token passing protocol is a variant of the well known three way handshake, and
is not described here: interested readers may find a exhaustive description and discussion in [3].

The time between two successive protected operations can be modeled using the cover time of a
random walk in the system graph: in [8] the authors prove that the distribution of such random variable
is characterized by a small probability after a value that grows with O(nlogn). Therefore, we may
expect that its distribution is comparable with that obtained using the reference random access algorithm
introduced in section 2.

The algorithm is based on some time constants, which characterize the system. Although the algo-
rithm is not overly sensible to the value of these constants (as shown by simulation), their evaluation is
a critical step, and depends on the specific application. Here they are listed for increasing magnitude:

∆skip the minimum latency of a token inside a component: this is the time a token will stay in a
component if the protected operation is not needed. A non null value ensures that the token will
not bounce too rapidly, thus dissipating network resources;

∆op the typical duration of the protected operation;

∆min the minimum time between two successive protected operations on the same component.

∆max the maximum time between two successive protected operations on the same component (used to
regenerate a new token when we suspect its loss).

We introduce a rate that binds two of them with the size N of the membership:

kload =
∆op ∗ N

∆min

When such rate is greater than one, we say that the system is overloaded.

4 The algorithm

The algorithm falls in the category of self-stabilizing algorithms, as defined by [4] and is probabilistic,
in the sense defined in [1]. Let us first examine the stable behavior, that corresponds to the case where
there is exactly one token in the system.

During stable operation the behavior of the algorithm is simple, consisting of receiving the token,
performing the protected operation only in case the component performed the protected operation more
than ∆min time units ago, and finally passing the token to another component.

The probabilistic model that describes the occurrence of a protected operation on a edge component
cannot be described analytically, since each event can last ∆skip, or ∆op, depending on when the previous
event has occurred on that component. A simulation approach seems more appropriate to study the
behavior of the system, and we will address simulation results in section 5.

The loss of a token can occur as a consequence of the failure of the token passing protocol: such
infrequent event breaks the stable behavior. The token generation rule recovers from such event, and
consists in generating a new token when a component does not receive one within a timeout ∆max from
the last token.

Indeed, it is far more frequent that the token is not really lost, but simply exhibits an anomalous
delay: in that case, such rule may induce the simultaneous presence of multiple distinct tokens in the
system. Therefore the token generation rule, which is introduced in order to recover from a token loss
event, most times has the effect of disrupting the stable property by introducing spurious tokens.

In order to remove spurious tokens, we apply to a token removal rule: the component discards a token
t when it has been enabled from less than ∆min time units by another token preceding t. Precedence is
based firstly on the timestamp included in the token, and next on the generator identifier.
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Such rule has the property that, in case of a wrong token loss detection, with high probability the
spurious token will be removed after being passed a few times. In fact, consider that, at any time, many
components have not exceeded their ∆min timeout: if the spurious token visits any of them it will be
thrown away. Since for each token passing operation the spurious token has the same probability of
being removed, the probability that the token survives falls exponentially with time.

Spurious tokens are also generated in response to token loss: in such case, many components will
exceed ∆max in fast sequence, generating a new token in response. Let tgen be the time when the first
new token is generated: if the token was lost more than tgen − ∆min time units ago, we are sure that
the first generated token will persist, and all other tokens will be removed. Otherwise, all components
that were visited by the lost component during the lapse [tgen − ∆min, tgen], may wrongly remove the
new token: following that, like in a sort of domino-effect, all regenerated tokens may disappear, thus
reintroducing the anomalous state.

Although the problem of token elimination is well studied in theory, and is often referred as a solution
to the leader election problem (see [2]), our setting disencourages a formal approach. Indeed, tokens are
continuously generated, and two token meet when they hit the same component within a certain time
interval (like in a worms game). These two facts make smart theoretical results, that are based on an
initial population of tokens, and on exact collision of tokens for token elimination, useless fo our purpose.

In our case, the (adverse) probability of an early token loss detection is bound to the rate between
∆op ∗N and ∆max: when this rate is small (around 0.2, according with our simulation), the probability
that the regenerated token is removed is sufficiently small, and the system recovers to stable operation.

The previous statement introduces a sensitivity of the algorithm to the number of components in the
system, that we discuss in the next section.

4.1 Dynamic join and leave

The dynamic variation of the membership that runs the token circulation algorithm is a key issue:
although we disregard the implementation of the membership update protocol, we must consider that
the number of components participating into such protocol (N in the above formulas) may vary in time.

When we analyze the effects of a variation of the size of the membership, we must take into account
that the role of our protocol is that of reproducing the behavior of a congested resource, when the number
of components in the system increases.

When the size of the membership N is significantly near the rate ∆max

∆op

, the system shows instability

when the token is lost. Until the token is not lost, the algorithm performs normally, the intervals between
successive protected operation on a component increase, while the rate kload reaches and overtakes the
unit. After a token loss event, it may take a long time before the system goes back to its normal behavior
(approx 20000 time units), and this may be inappropriate for certain applications, as shown in figure 4.

In order to cope promptly with the event of a token loss, each components must dynamically adapt
the timeout ∆gen used to regenerate the token, setting it to a value higher than ∆max when needed.
This adaptivity is obtained incrementing ∆gen at a constant rate (50% in our simulation) each time the
component needs to regenerate a new token, and decrementing of a small fraction (5% in our simulation)
of the difference from ∆max each time the component receives a token.

Such rule has no effect on a component as long as it regularly receives a token and ∆gen = ∆max.
When a token is lost, all components that generate a new token rapidly raise their value, and the new
value is used only if all tokens are lost again, which indicates that the system is inclined to instability.
∆gen will keep growing exponentially, until the stable condition (just one token running) is reestablished.
When the system reenters that mode, the value of ∆gen on all components that incremented it during
the unstability will logarithmically tend to ∆max again.

Note that, while ∆max is a system wide constant, ∆gen is a local variable that is updated in response
to local events.

Simulation shows that such rule (which is inspired by TCP congestion avoidance [7], but also by many
self-regulating devices) is extremely effective in coping with kload larger than one, which corresponds to
overload.

In figure 1 we show a programmer-friendly description of the wandering token algorithm.
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∆gen = ∆max

K1

loss = 1.5;
K2

loss = 0.05;
lasttoken = {timestamp = 0, id = NULL}
while (true)

do

select(receive(token),∆gen);
if (defined(token))

then

∆gen = ∆gen − K2

loss(∆gen − ∆max)
if ((token → timestamp)− (lasttoken → timestamp)) ≤ ∆per

then if (token → id) 6= (lasttoken → id)
then

next

else

sleep(∆skip)
send(token)

fi

else

execute(A)
send(token)

fi

else

∆gen = ∆gen ∗ K1

loss

token = {timestamp = localclock, id = newid()}
send(token)

fi

lasttoken = token

od

Figure 1: The wandering token algorithm

4.2 Clock synchronization

As for relative drift among clocks, which alters the measurement of time intervals, we should ensure
that the various timeouts are measured appropriately, but the rules are not critical with respect to the
measurement of the duration of such timeouts. A drift of 10−4, which is typical of a low cost crystal
clock, is adequate. However, badly compensated clocks may induce inconsistent operation.

The application of some of the rules explained above requires a certain degree of synchronization
among the clocks of the components. Such synchronization should simply ensure that the token tg,
generated in response to a timeout for a token tx, has a timestamp larger than tx: therefore the only
requirement on clock accuracy is that it should be small compared with ∆max, which falls in the range
of thousands of time units.

5 Simulation results

We carried out a series of experiments using a simple (200 Perl lines) ad hoc discrete event simulator,
which is available upon request.

The simulation takes into account token loss, token regeneration and token removal, as explained in
section 4. We do not simulate variable durations of the token passing operation, which is assumed to be
negligible with respect to ∆skip, the minimum time the token is hold by a component.

We tested the regularity of the execution of the protected operation during a long run, as well as the
number of tokens in a system characterized by the time constants in table 1. All simulations last 106

time units.
In figure 2 we compare the results of the benchmark algorithm, with random access, and the algorithm

regulated using the wandering token: the improvement is evident. When the system is not overloaded
(N = 150) the number of time spent with more than one protected operation running is less than 0.5%
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∆skip 1
∆op 4
∆min 600 1.5 ∗ (∆op ∗ N)
∆max 1800 3 ∗ ∆min

Table 1: Time constants used in the simulation, in arbitrary time units

of the total duration of the experiment, while using the random access algorithm this amounts to more
than 15%. The comparison is less favorable when the system is overloaded: in that case the system
controlled using the wandering token spends 10% of the time running two or more protected operations,
while using the benchmark algorithm this amounts to 40%.

The interval between protected operations reflects the progressive saturation of the resource moving
from 150 to 300 users: the distribution of such random variable is shown in figure 3.

The transient following a token loss event is a critical issue: its length is relevant, as shown in figure
4, and its distribution is dispersed. However, during the stabilization transient, the algorithm shows
good properties.

During most of the time there is at most one protected operation running: in our experiments, this
statement is violated during 3% of the time in case of nominal load (N = 150), and in 9% of the time in
case of overload (N = 300), which are comparable with the same figure during stable operation. However
the distribution of such random variable has a longer tail, when compared with stable operation. For
instance, in case of overload (N = 300), during stable operation we observed 8 time units over 106

(0.0008%) where more than 5 protected operations were running (see figure 2), while during stabilization
this occurred during (0.015%) of the time.

The interval between successive execution of the protected operation on a component exhibits a
similar behavior: during stabilization most of the values of this random variable are concentrated about
∆min, but their dispersion is significantly higher: in case of overload, during stable operation only 9
intervals over 109 are longer than 3000 = 5 ∗ ∆min time units, which might mean starvation for the
application that wants to perform the protected operation, while during stabilization this amounts to
almost 15%. The application would probably assimilate this event to the temporary failure of the shared
resource, and act accordingly.

6 Case study: multicast of a video stream

We introduce a case study that justifies the system constants used in the simulation described in section
5.

We consider a network where a video stream at 650KBps is broadcast to a group of receivers: at the
same time different receivers are viewing distinct parts of the stream. The shared resource in a 200MBps
virtual circuit, that is the backbone of the infrastructure.

We assume that applications are enabled to use the backbone for ∆op = 4 seconds, which corresponds
to a data transfer of 800MB. From the above we conclude that each application should be enabled to
use the network once every 20 minutes: we set prudentially ∆min = 10 minutes.

Given the above, we can support at most N = 150 subscribers, each having a 4 seconds share every
10 minutes. We also examine the consequences of a 100% overbooking, and observe the behavior when
N = 300.

Based on the above parameters, we can figure out the behavior of the system: as long as one token
is wandering in the system and the number of units is nominal or less, 80% of the times the applications
have access to the backbone within 2∗∆min: a moderate level of buffering allows a smooth reproduction.
Occasionally (less than one percent of the time) two or more applications are allowed to use the backbone:
this can be assimilated to an allowed burst of traffic along the Virtual Channel.

When the number of receivers grows up to two times the nominal size, the chance of concurrent exe-
cution increases, but the event that more than 3 data transfers are occurring simultaneously is rare, and
should be manageable by the application and by the network with a noticeable but sporadic degradation
of the performance. The application will be aware of the problem, since the period between successive
data transfers is 90% of the times lower than 3 ∗ ∆min: this may induce the application to negotiate a
lower quality of service, reducing the stream bitrate of about 30%.
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Figure 2: Benchmark algorithm vs. wandering token: distribution of number of concurrent operation on
a shared resource for memberships of 150 (nominal) and 300 (overload) subscribers (simulation lasted
106 time units with ∆min = 600 and ∆op = 4)
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The transient after a token loss event may be quite long, taking several hours to terminate: during
that time a system of nominal size performs, for the sake of simplicity, like an overloaded one. This may
be admissible in our case study, since the user application will simply experience a slightly degraded
quality of level of network. When, in addition, the system is overloaded, the congestion avoidance
mechanisms of the underlying network may undertake traffic shaping.

7 Conclusions

The wandering token algorithm is proposed as a solution for an architecture where moderating the
concurrent access to a shared resource can improve the performance. Its cost, in terms of communication
and computation, is negligible.

The algorithm is fully scalable: when the scale (i.e., the number of components in the system)
overtakes the capacity of the shared resource, the wandering token algorithm gradually reduces the
resource share granted to each component, thus shielding the shared resource from the consequences of
the overload.

While token duplication is avoided by a 3-way token passing protocol, the loss of the token cannot
be excluded. When such event occurs, the operation becomes unstable for a quite long period: during
that lapse, the features of the algorthm are degraded. We regard a better reaction to token loss as an
open issue.
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