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Abstract

The problem of rollback recovery is traditionally ap-
proached using a model oriented to packet delivery. In-
stead, we introduce a model centered around complex
sessions, and we explain why this model is more appro-
priate.

Using this model, we extract a basic coordination
scheme that is common to the three distributed activities
that compose rollback recovery: checkpointing, rollback
and disposal. The basic coordination scheme is refined
to describe each of the three activities.
Keywords: distributed control, checkpointing algo-
rithm, recovery algorithm, checkpoint disposal algo-
rithm, quasi-synchronous coordination, consistent cut.

1 Introduction

One aspect of the reliability of a complex system is its
ability to recover from failures of its components. One
way to implement this feature isrollback recovery: it
basically consists in restoring a consistent computation,
preserving partial results, after a crash.

The design of rollback recovery is based on some dis-
tributed knowledge of the history of the system; one
model is universally adopted to describe such knowl-
edge and we claim that it is not adequate for the purpose.

This model is based on the concept ofprocess, a
sequence of states that represents a local computation.
Communication among processes is modeled usingmes-
sages, that update the state of a (receiving)processusing
the state of a (sending)process.

The sequential organization of the states of a pro-
cess, and the precedence between sending and receiving
states, introduce partial orderings among states. If we
aggregate them by transitive closure, we obtain a partial

ordering that describes the history of the system: this
structure is universally known as Lamport’shappened
beforerelation.

The irreflexivity of Lamport’s relation is equivalent to
the statement of the existence of atimestamping function
for the states, which is a tautology in our physical world:
the effect follows its cause. We say that a model based
solely on such ordering isun-structured, since there is
no assumption about the patterns in the communication,
anda-synchronous, since the model does not introduce
timing restrictions.

Such model is simple, since it uses well known con-
cepts, and strong, since it does not introduce relevant
assumptions: these are attractive features of a formal
model. In fact, theunstructured/asynchronousmodel is
universally adopted as the foundation of papers that ad-
dressquasi-synchronous[7] checkpointing/recovery al-
gorithms: just to mention the most recent issues, [9] and
[6], that follow a scheme initiated by the “chase” proto-
col introduced by Merlin and Randell [8] in 1978.

Instead, we argue that theasynchronous/unstructured
model is not adequate to support the design of rollback
recovery.

Our first point is that strong models are not necessar-
ily good foundations for effective designs: strong mod-
els need to be bound with realistic restrictions, that pro-
mote simple and effective designs. The final result is
affected by the appropriateness of the restrictions more
than from the strength of the basic model.

Theasynchronous/unstructuredmodel focusses on a
simple communication mechanism: connectionless de-
livery of a single packet. However, we point out that
behind each delivery there is the overhead of rollback
recovery related activities.

Alvisi et al. [1] have experimentally investigated the
performance of quasi-synchronous checkpointing algo-
rithms that use the asynchronous/unstructured system
model: such algorithms perform an analysis of system
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history each time a packet is delivered, and record a
new checkpoint when needed. The paper concludes that
if the overhead introduced by the algorithm is expen-
sive with respect to the cost of the packet delivery it
is connected with, most of the advantages of the quasi-
synchronous checkpointing approach are lost. Although
quasi-synchronous protocols impose a limited computa-
tional overhead, according with [4], the balance is still
unequal, and the authors indicate the need of schedul-
ing the recording of the checkpoint concurrently to the
checkpointed application, thus incurring further concur-
rency control problems and overhead.

In addition, the authors of [1] indicate as practically
impossible to design a static checkpointing policy that
optimizes the size of the checkpoints. Upon receipt of a
message, the checkpointing policy may require the reg-
istration of a checkpoint: this request is neither pre-
dictable nor negotiable, since from its fulfillment de-
pends the possibility of future rollbacks. An undesirable
side effect is that the size of a checkpoint cannot be an-
ticipated, since it may be requested when the recording
of the internal state is more expensive: pending inter-
rupts, opened files, unflushed buffers contribute in an
impredictable way to the size of a checkpoint. The im-
predictability of the size of the checkpoint is a direct
consequence of the absence of structure in the basic
model: appropriate restrictions could make viable the
task of limiting the size of the checkpoints.

The results in [1] support the impression that the
asynchronous/unstructured model is unsuitable to rep-
resent the application framework of a rollback recovery
algorithm. Our proposal is to focus on complex interac-
tions, like those initiated by theSession Initiation Pro-
tocol (see RFC2543), whose cost is comparable to the
overhead introduced by recovery related activities.

2 A session-based model

Our model extends that previously introduced in [3]
and is based on the concept ofsession. This is the atomic
computational step whose initial state we want to check-
point in order to be able to recover from a failure that
might occur later.

A sessionconsists in the coordinated activity of a
number ofparticipants, the processes. A sessionis
opened running aninitiation protocolthat entails a com-
plex communication pattern: the final state of each par-
ticipant depends on the initial state of all participants.
For instance the participants might have to reach some
sort of consensus, as in the case of theInitial Sequence
Numbersin the TCP protocol (RFC793).

Unlike the unstructured/asynchronousmodel, our
session orientedmodel introduces both a structure in the
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Figure 1. Comparison of ordering relations

computation (thesession), and a form of synchroniza-
tion among participants (theinitiation protocol). Based
on this model, we are able to design a complete quasi-
synchronous rollback recovery scheme, composed of
checkpoint coordination, rollback control, and check-
point disposal.

Definition 1 A processP = (S, <) consists of set of
statesS = s0, . . . , sn and of a relation< overS, whose
transitive closure is a irreflexive total order. Anevent is
a pair of statese = (sa, sb) such thatsa < sb.

Definition 2 A concurrent computation (S, <) con-
sists of a set of statesS that can be partitioned in a
family of sets{Si} such that each(Si, <i) is a process.

Definition 3 The present ⊥ and the origin > of a
concurrent computation(S, <) contain respectively the
states that have no successor, and those that have no
predecessor in the concurrent computation.

Definition 4 A sessiont is a set of eventse0, . . . , en in
a concurrent computation(S, <).
We define pre(t) def= {s | (s, s′) ∈ t} and post(t) def=
{s | (s′, s) ∈ t}.

We have replaced the connectionless message ex-
change of theunstructured/synchronousmodel with an
arbitrarily complex coordinated activity, thesession.
The graphical representations are compared in figure 1.

Definition 5 A communication schemeH = ((S, <
), T ) consists of aconcurrent computation(S, <), and
of a setT of sessionsthat partition1 theeventsin (S, <).

In figure 2 we give a graphical description of a com-
munication scheme: vertical segments represent states,

1Note that, for the sake of uniformity, eacheventmust be included
in onesession, and therefore localeventsare singletonsessions.
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and horizontal segments represent sessions. Processes
are represented by the alignment of vertical segments.

Definition 6 Let ((S, <), T ) be communication
scheme.

ta�tb
def⇔ ∃s | s ∈ (post(ta) ∩ pre(tb))

The transitive closure�∗ corresponds to Lamport’s
“happens before”.

Definition 7 A history is a communication scheme
((S, <), T ) such that either

• S is the empty set or

• ∃tf ∈ T | H ′ = ((S′, <′), T ′) where

S′ def= S/post(tf )

sa <′ sb
def⇔ (sa, sb ∈ S′) ∧ (sa < sb)

T ′ def= T/{tf}

is an history.

Simply put, aconcurrent schemeis anhistory if and
only if we can find a session that can be removed, so that
the remainingconcurrent schemeis still anhistory. If we
repeat this operation, assigning decreasing timestamps
to the removed sessions, we obtain a timestamping for
the sessions.

Lemma 1 A communication scheme((S, <), T ) is an
history if and only if the transitive closure of� is ir-
reflexive2.

which ensures thathistoriesmodel all and only “real”
computations.

The well-known concept ofconsistent cutis written
as a property cc() that characterizes a set ofsessionsin
anhistory:

Definition 8 LetT be a subset of sessions in the history
H.

• 4(H,T ) = {t | ∃tc ∈ T, tc�∗t}

• cc(H,T ) = >(4(H,T ))

The definition is sound since the4 of any set of ses-
sions in an history is an history.

We say that the sessions inT trigger the consistent
cut. Figure 2 shows an history and three consistent cuts
triggered by four sessions,ta, tb, tc, td.

We can introduce a relation among consistent cuts,
and a set of consistent cuts that are totally ordered by
this relation:

2irreflexive means∀x,¬(x�x).
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Figure 2. The layout generated by T =
{ta, tb, tc, td} is T = (T0 . . . T3) with T1 =
{ta, tb}, T2 = {tc} and T2 = {td}. On the
right is the corresponding global process.

Definition 9 Let H be a history.

cc(H,Tx) ≺ cc(H,Ty) def⇔ 4(H,Ty) ⊆ 4(H,Tx)

An outline T of an history H is a series of sets of
sessions(T0 . . . Tn) such that

∀i ∈ [0 . . . (n− 1)], cc(H,Ti) ≺ cc(H,Ti+1).

Using the≺ relation, we can describe the concurrent
operation of the processes as a sequential process: the
global process. In that structure the consistent cuts take
the place of the states. Figure 2 shows the global process
associated with an history.

Definition 10 A global processof an historyH is a
processP = (T ,≺), whereT = (T0 . . . Tn) is anout-
line of the historyH.
A global event is a couple of consistent cutsεi =
(cc(H,Ti), cc(H,Ti+1)).

2.1 Comparison with the unstruc-
tured/asynchronous model

The formal difference between theunstruc-
tured/asynchronousmodel, and oursession oriented
model, is that the former associates timestamps to local
states, while the latter timestamps distributed activities,
thesessions.
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Our rollback recovery operates at session level, giv-
ing the system the ability to restore the checkpoints
recorded by processes at the beginning of selected ses-
sions, in order to recover from faults in following ses-
sions. For this, we introduce some further overhead in
the initiation protocol, which per serequires a commu-
nication overhead and a rich information exchange. We
claim as appropriate to assume that participants reduce
their internal state before entering a new session, thus
reducing the size of a possible checkpoint.

Using thesession orientedmodel the design of a
complete rollback recovery scheme is approachable, as
we see in the next session. The task is extremely more
complex using theunstructured/asynchronousmodel,
and the evidence for this is that papers using that model
limit their scope to one of the three components, either
checkpointing, or rollback, or checkpoint disposal, leav-
ing open the problem of their integration.

3 Rollback recovery algorithm require-
ments

A quasi-synchronous rollback recovery algorithm is
decomposed into three distinct tasks:checkpointing, to
select the states that must be recorded as checkpoints,
rollback , to trigger the restoration of the internal state
of processes that experienced a failure, as well as of all
those that have been possibly reached by the effects of
the failure, andcheckpoint disposal, to reclaim the re-
sources allocated to the checkpoints when the applica-
tion decides that they will not be used anymore.

These tasks are often considered as three distinct re-
search areas, and for each of them there is an immense
bibliography. The research concerning thecheckpoint
algorithms presently regards the quasi-synchronous ap-
proach as an interesting option: relevant references in
this field are [6, 9, 7]. An experimental investigation
about this approach is in [1].

Therollbackalgorithm is often left implicitly central-
ized (as in [6]), or refers to a different approach, that logs
messages instead of recording checkpoints [2].

The research concerning thedisposalof the resources
allocated to useless checkpoints applies to a static,
system-wide criteria: a checkpoint is useless when it is
followed, on the same process, by another checkpoint
belonging to aglobal recovery line (one that contains a
checkpoint for each process in the system) [10] . This
condition is far from being practical: i) the reference
distributed system (i.e. the Internet) has a virtually un-
limited number of processes, and ii) as a general rule the
criteria to decide the disposal of a checkpoint are local:
for instance, they may be based on the fact that an irre-
vocable event has been performed since the registration

of the checkpoint.
Using asession orientedmodel, a rollback is aglobal

eventthat is fed by the results of a diagnostic activity
that identifies one or more faulty sessions. We assume
that the diagnostics are known to a few units in the sys-
tem, those thattrigger the rollback. Theglobal rollback
eventis the result of the coordinated execution oflocal
rollback events, on each process that was exposed to the
results of faulty sessions. Alocal rollback eventconsists
in restoring a past state, previously recorded in acheck-
point recorded during alocal checkpointing event. Each
local checkpointing eventmust be in its turn coordinated
with other similar local events in aglobal checkpointing
event. The set of restored checkpoints is indicated as the
recovery line.

A global rollback eventmust satisfy two consistency
requirements: the effects of the faulty sessions do not af-
fect the states in the recovery line, and the effects of the
faulty sessions do not affect the states after the restora-
tion of the local checkpoint. Using the session-based
model:

Definition 11 Let εc = (cc(c), ) be a global check-
pointing event, and εr = (cc(r), ) a global rollback
event to the recovery linerepresented by cc(c). They
form a consistent recovery if

• each local state in cc(r) is identical to that in cc(c)
for the same process, and

• cc(c) ≺ cc(r).

which requires that processes are able to detect when the
current state (i.e., the initial state of the forthcoming ses-
sion) is part of aconsistent cut, and to obtain some infor-
mation about it. In case theconsistent cutcorresponds
to aglobal checkpoint event, this information is used to
decide the recording of a checkpoint, and to associate it
to the appropriate recovery line. In case theconsistent
cut corresponds to a global state restored by aglobal
rollback event, the information about theconsistent cut
is used to decide whether a restore operation is needed,
and to select the checkpoint. Finally, a given checkpoint
can be flushed by the event following the state in the
consistent cutassociated to theglobal disposal event.

Therefore the coordination of checkpointing, roll-
back, and checkpoint disposal is based on the same pro-
tocol, that is executed during theinitiation protocol.

3.1 The basic coordination scheme

This protocol detects that the current state of the pro-
cess is part of aconsistent cut, and, in this case, obtains
a description of the associatedglobal event. From this
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description the process derives the description of a local
action.

As a first step, we define two integer values that play
a key role in thebasic coordination scheme: the level
(L) and thebaselevel(B). These values are associated
to a session, and can be computed by each process par-
ticipating to that session during itsinitiation:

Definition 12 LetT be a subset of thesessionsin a his-
tory H. The functionsBT (t) andLT (t) associate an
integer value to asessiont in thehistory:

BT (t) =
{

0 if pre(t) ⊆ >(H)
max {LT (t′) | t′�t} otherwise

LT (t) =
{
BT (t) + 1 if t ∈ T,
BT (t) otherwise

The computation of thelevelshould be added to the
nativesession initiation protocol.

The first step consists in computing the maximum of
the levelsof the precedingsessions: it is a sort of con-
sensus algorithm, and should be piggybacked to theses-
sion initiation protocoladding some piece of informa-
tion needed to support the computation of thebaselevel.

Next the participants decide whether to trigger acon-
sistent cut. This decision depends on the specific appli-
cation. For instance, in the case ofcheckpointing, partic-
ipants might check that a checkpoint has been recorded
from less than 60 seconds. In case the participants de-
cide to record their state in aconsistent cut, the base-
level computed in the previous step is incremented by
one. This operation either triggers a newconsistent cut,
or includes the states in an already existing one.

The following theorem claims that, when a partici-
pant computes thelevel of the forthcoming session, it
also identifies theconsistent cutsthat contain the cur-
rent state. The theorem gives an effective algorithm to
compute such identifiers, and concludes the design of
the basic coordination scheme, illustrated in table 1.

Theorem 1 LetT be a subset of thesessionsin a history
H, andT = (T0...Tn) the correspondingoutline. For
each states, let t be a session such thats ∈ pre(t)∧s ∈
post(t′)

s ∈ cc(H,Ti) ⇔ (LT (t) ≥ i ∧ LT (t′) < i)

4 Design of a rollback recovery protocol

Each of the three protocols of interest — checkpoint,
rollback and dispose — run a separate instance of the
basic coordination scheme. The internal coordination of
the three global processes, as well as their interactions,
is under control of the basic coordination scheme.

Require: L is the level of the last session (see definition 12);
1: the process computesB as the baselevel of this session;
2: if B > L then
3: for all i ∈ [L+ 1,B] do
4: the description of thelocal eventassociated withεi

is obtained from the participants that already imple-
mented it;

5: the local eventassociated withεi is implemented;
6: end for
7: end if
8: if the process decides, in cooperation with other partici-

pants to the session, to trigger a newglobal event, with an
associatedlocal eventthen

9: B = B + 1;
10: the local event associated withεB is implemented;
11: end if
12: L = B;
Ensure: L is the level of this session;

Table 1. The basic coordination scheme

To specialize the basic scheme for a specific activity,
we need to specify:

• which local event corresponds to the the global
event;

• which are theparameters, if any;

• which are the requirements about theparticipants
to the forthcoming session, if any.

In the following we outline three simple specifica-
tions.

4.1 The global checkpointing process

The specification is summarized in table 2.
We use thelevel as an identifier of the checkpoint:

we do not need any further information to indicate a
recovery line. This identification is used during the
checkpointingactivity, to attach a significant label to
the recorded state, during therollback, to indicate which
checkpoint is to be restored, and during thedisposal, to
indicate which checkpoint is to be removed.

4.2 The global rollback process

The specification is summarized in table 3.
In order to enforce the relation introduced in defini-

tion 11 we need to guarantee that theglobal checkpoint
eventprecedes theglobal rollback event. To this pur-
pose, we require that aglobal rollback eventto a given
recovery line can be triggered only by a subset of the
processes that triggered theglobal checkpoint eventthat
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local event record a checkpoint
parameters none
participants unbound

Table 2. Specification for the checkpoint-
ing process

local event restore a checkpoint
parameters the levelof the recovery line
participants some of the triggers of the recovery

line + the serializer process

Table 3. Specification for the rollback pro-
cess

local event dispose a checkpoint
parameters the levelof the recovery line
participants the triggers of the recovery line

Table 4. Specification for the disposal pro-
cess

recorded that recovery line. They will engage in a spe-
cific rollback triggeringsession, and issue an indication
of the recovery line to use.

In the above scenario, it is necessary to avoid con-
current rollbacks: one solution consists in the introduc-
tion of a centralized process (for instance the same that
performs the diagnosis), that is in charge of serializing
rollback operations. This process should be called to
participate to everyrollback triggeringsession, but does
not store any data about them. Therefore its substitution,
in case of failure, is straightforward.

Unlike the checkpointing, that is transparent to the
session, the local rollback event may interfere with the
forthcoming session. The application controlling the
session should be made aware of this event, and under-
take the appropriate actions: for instance, abort and re-
plan the session.

4.3 The global disposal process

The specification is summarized in table 4.
If the rollbackanddisposeglobal processes run in re-

ciprocal isolation, there could be the case that one pro-
cess triggers aglobal rollback eventto a recovery line
that has been already disposed by other processes. In
order to avoid this, we should introduce another con-
sistency requirement, similar to that introduced between
checkpointing and rollbackglobal events: a global dis-
pose eventcan be triggered only by a session whose par-
ticipants are those that triggered theglobal checkpoint
event.

5 Conclusions

The coordination of an efficient rollback recovery
scheme is one of the most challenging problems in dis-
tributed computing, and the integration of its compo-
nents — checkpoint, rollback and disposal — is still an
open problem.

This paper suggests a new model, that introduces
complex sessions instead of plain packet delivery, and
a unifying concept, thebasic coordination scheme: to-
gether, they simplify the design of integrated solutions.

We are currently coding the formal issues using the
Coq [5] proof assistant.
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