
Collision avoidance for
Delay_Req messages in

broadcast media

Augusto Ciuffoletti
augusto@di.unipi.it

Università degli Studi di Pisa
Dipartimento di Informatica

This presentation also available as slidecast from www.slideshare.com

Outline of the presentation

• Motivation and problem description
• The algorithm
• Implementation issues
• Validation by analytical model and simulation

11/04/09

2

System model

• The system is composed by a (large) number
of slave clocks

• There is one master clock in charge of
maintaining clock synchronized

• Network is a broadcast medium with unique
collision domain

• Slaves require to be adjusted with Delay_Req/
Delay_Resp with bounded periodicity

Idea:
Exploit broadcast to avoid collision

11/04/09

3

Collision events

• Two Delay_Req
msgs sent at approx
the same time

• The (broadcast)
network transports
them in different
times

• They are serviced
with some delay

• Asymmetry and jitter
are introduced

11/04/09

4

Asymmetry

Delay_Req
collision

Master Slaves

How frequently this event
occurs?

• R: It depends on the distribution of Delay_Req
events

• We assume that all slaves want to refresh their
clock with the same frequency.

• IEEE1588 avoids clustering of Delay_Req
messages using random delays (clause
9.5.11.2)

• This has the effect of keeping the density of
Delay_Req events constant in time

11/04/09

5

Probability of collision

• We introduce two system constants:
n: the number of slaves
δ: the period between successive Delay_Req
on one slave

• Expected number of Delay_Req per time unit
λ=n/δ

• To evaluate the probability of collision, we
need to introduce the duration of the event τ

1-(1+r)e-r with r=λτ

11/04/09

6

Probability of collision

11/04/09

7

τ=10 μsec
N=1000
δ=1 sec

p=5 10-5

1 collision
every 2000 secs

Requirements
for a collision avoidance algorithm

• Bounded timing of Delay_Req (from slave
perspective);

• Lower probability of collision events with
respect to random scheduling

• Low traffic overhead
• Embedded into existing protocol

11/04/09

8

The basic idea:
token scheduling

• A token is circulated: the slave holding the
token sends the Delay_Req

however
• Additional control to implement the overlay

ring
• Additional bandwidth to implement token

exchange
• Uncertain roundtrip time
• Compensated by (apparent) deterministic

collision avoidance

11/04/09

9

Introducing random walks

• Randomized control of the overlay network
(token destination selected at random in a
random set of neighbors)

• Token carried by the same
Delay_Req/Delay_Resp pair

• Global view to enforce bounded return time

11/04/09

10

Token circulation algorithm
slave part

• Maintain a dynamic, random list of neighbors
observing the traffic on the broadcast medium

• Wait to receive a token
• Send the Delay_Req upon receiving a token
• Deliver the token to a neighbor at random

OK, but what about bounded return time?

11/04/09

11

Token circulation algorithm
master part

• The master maintains the timeouts of all
slaves

• When one of the slaves is about to exceed the
return time bound

the master reroutes the token
to feed the starving slave

• The data structure needed for the task is not
discussed in the paper
How does an IP device de-route a token...

...and what is a token, after all?

11/04/09

12

What is a token, anyway?

• There is no token in fact: it is just an
abstraction

• “Holding the token” is a flag in the state of
the slave

• The slave holding the token indicates, in the
Delay_Req packet, the MAC of the next holder

• The master may reroute the token by
indicating a different token holder in the
Delay_Resp

• Remember that we are in a broadcast
network: everybody sees every packet

11/04/09

13

Implementation issues

• Not enough room in a Delay_Req Delay_Req
(5 octets + 4 bits available) frame to hold a
MAC address (6 octets)

• Unless MAC are locally administered
• Our solution:

– Use 3 octets in both Delay_Req and
Delay_Resp

– In case of ambiguity, the master disambiguates
completing the MAC

– In case of rerouting and ambiguity, two
“Delay_Resp” are required (extra network load)

11/04/09

14

Evaluating the solution

• Residual collision event: two timeout are
generated at the same time

• The master selects one of them to receive the
token

11/04/09

15

• The figure compares
native random
scheduling with
token scheduling

• The model
considers a full
mesh overlay

• Colliding events are
discarded

Evaluating the solution

• To evaluate the impact of the two approximations,
we used simulation.

11/04/09

16

r=0.2
• The right spike is

motivated by the
slaves that receive
the token as a
consequence of a
timeout

• The deviation is due
to bounded degree
approximation of
the network

Conclusions

• In a broadcast network with many slaves
Delay_Req messages may collide, and
deteriorate synchronization

• We use the power of broadcast (the reason of
the problem) to reduce the risk of collision

• Timing of Delay_Req is bounded (as required)
• No network overhead (as required)
• No change in message format (as required)

11/04/09

17

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17

