
SCALABLE CONCURRENCY CONTROL IN A
DYNAMIC MEMBERSHIP –
EXPERIMENTAL RESULTS∗

Augusto Ciuffoletti
INFN-CNAF, Via Berti Pichat,Bologna, Italy
augusto@di.unipi.it

Ali Asim
University of Paris Sud-XI,Paris, France
Ali.Asim@lri.fr

Abstract We introduce a solution for a concurrency control problem which is frequently
encountered in practice: in a dynamic system we want that the load on a cen-
tralized resource is uniformly distributed among users, offering a predictable
performance as long as it is not overloaded. We propose an original solution
based on probabilistic assumptions, and we comment early experimental results.

Keywords: performance stabilization, randomized diffusion, membership management

∗This research work is carried out under the FP6 Network of Excellence – CoreGRID project funded by the
European Commission (Contract IST-2002-004265)



206 GRID AND SERVICES EVOLUTION

1. Introduction
Concurrency control is one of the basic building blocks of a distributed sys-

tem. In this paper we examine a simple yet significant concurrency control
instance: each node of the system must be enabled to execute a critical oper-
ation at approximately regular intervals, and we want the lapse between two
successive executions to be decoupled from the size of the system.

We may find several use cases for this kind of concurrency control, even
when we restrict our scope to the management of a Grid infrastructure: for
instance, access to a global resource registry (the kind of problems otherwise
solved using Distributed Hash Tables [5]), or execution of bulk data transfers
[13] from data repositories. As a general rule, all applications for which a
globally available resource, whose capacity we expect to grow with system
size, can take advantage of such kind of concurrency control.

We describe how token circulation, a technique that is traditionally used to
enforce mutual exclusion, can be extended to cover this case of concurrency
control, and present experimental results that prove its effectiveness.

2. Multiple tokens randomly moving
The circulation of a unique token whose presence enables the execution of

the critical operation is a traditional topic of applied and theoretical research
[6, 12]. However, the circulation of a unique token does not guarantee that each
node is enabled periodically when the system size chages, since the return time,
the lapse between two successive visits of the token to a given node, clearly
depends on the size of the system.

The presence of several tokens is a less investigated technique [9, 3] which
is suitable for our problem statement. Considering a constant and uniform
token latency, the lapse between the receive of a token and its forward the the
next node, one solution consists in changing the number of tokens linearly with
system size. This is a quite original approach, and we found no bibliography
on this subject.

In order to apply such technique, we apparently need to know a local esti-
mate of system size: this is a quite intriguing research problem [2]. We explore
an alternative which consists in using the feedback that we obtain from the ob-
served return times; using that feedback we locally control token generation or
removal. We expect that this form of closed loop control stabilizes the number
of tokens so that each node is visited by a token with the required frequency.
Such technique relies on the assumption that token latency, the interval be-
tween two successive token passing operations, is a stationery process.

Notably, the token circulation technique makes reference to a topology (by
default circular), that guides the token across the system. The maintenance of
an overlay ring on the fabric of the distributed system is a well studied topic;



Scalable Concurrency Control in a Dynamic Membership 207

however, the extension of known solutions to systems of thousands of nodes
with unreliable links is problematic.

An alternative, which is valid when considering as the underlying fabric a
full mesh topology like the transport level of the Internet, is to use a random
walk approach: at each step the token is forwarded to another node selected at
random in the distributed system [7, 11].

Such a technique introduces a further problem, since each node needs to
access the directory of system nodes to select the next destination for a token.
For the sake of reliability, we exclude the presence of a centralized registry, but
we assume that each node collects a significant fraction of node identifiers. The
resulting topology approximates a full mesh, since each node will be adjacent
only to the peers listed in the local directory. However, theoretical analysis of
random diffusion processes [8, 10] ensures that in such case the random walk
process is similar to the case of a full mesh.

The collection of a membership directory may introduce scalability prob-
lems: our solution consists in piggybacking to each token the notice of recent
join and leave events. This limits the response to the churm, the process of join
and leave events, of our membership.

The availability of a directory of the membership is also required to ensure
some security: when a node receives a token from a peer, it should be able
to check whether the sender is included in the membership. In our solution
we envision the storage of authenticated public keys in the directory: keys are
used to produce a signature of each received token, before it is forwarded to
the next peer.

Summarizing, our solution will feature the following techniques:

a feedback mechanism that regulates the number of tokens is used to
ensure the frequency of token arrival events on each node

tokens are forwarded randomly based on the local knowledge of the
membership

each token is signed using sender’s certificate

each token carries recent membership changes observed by the sender.

2.1 Regulation of the number of tokens
Each node measures the lapse from last token passing operation, and com-

putes an Exponentially Weighted Moving Average (EWMA) using successive
values. The EWMA returns a robust estimate of the average interarrival time
of a token on a given node.

Comparing the EWMA with the desired interarrival time the node is able to
trigger compensating actions, that have the effect of optimizing the number of
tokens in the system:



208 GRID AND SERVICES EVOLUTION

the observation of an interarrival time longer than kmax ∗ twait reflects
in the generation of a new token;

the observation of an interarrival rate shorter than twait/kmax reflects in
enqueuing the token until that time;

token overflowing the capacity c of the queue are removed from the sys-
tem

The token buffering in the input queue smooths the variation of the number
of tokens in the system: simply removing early tokens has been observed to
induce a slower convergence.

The convergence of the above rules to the desired interarrival time depends
on the distribution of the interarrival times for the specific system. It is possible
to prove that the system converges to the desired value if, when the number of
tokens ensures the requested interarrival time, the two events of token genera-
tion and removal have identical probabilities.

The parameters kmax and c should be computed so to satisfy such a require-
ment, but this cannot be done analytically. Therefore we opt for a first hit
approximation suitable for an asymmetric distribution of interarrival times, the
right queue being significantly longer than the left one.

In our experiment we used kmax = 3 and c = 2: such parameters showed
to be somewhat conservative, since average interarrival time is better than ex-
pected, at the expenses of the number of circulating tokens.

2.2 Local registry management
When a node passes the token to another node, it includes in the token a list

of recently observed join and leave events. The capacity of this list is a system-
wide constant: we used the value of 10. Each element in the list contains the
identifier of a node, and its certificate. Let us follow step by step a token
passing event, starting from the send event.

The node that forwards a token piggybacks to the token its signature, com-
puted on the whole token using its personal certificate. Starting from the first
retry, the node sends also its certificate and, after some unsuccessful retries, it
selects another peer.

Upon receiving a token, the node first verifies whether the peer is in the
local directory, and if the signature matches with the certificate. If either test
fails, the token is silently discarded, assuming that a safe peer will resend the
same token together with its certificate. If the token contains a certificate, this
is verified using the public key of the certification authority, and the signature
is checked. If either test fails, the token is silently discarded.

The final step consists in updating the registry with the updates recorded
in the token, and merging the update list with the local update list. Once the



Scalable Concurrency Control in a Dynamic Membership 209

critical activity controlled by the token is complete, the token is forwarded to
another peer.

A join event fits smoothly in the above schema. The joining node obtains
two input parameters: one personal certificate released by a well known Certi-
fication Authority (CA), and the address of another node in the system.

Using this information the node generates a new token, indicating itself as
a joining member in the update list. The token is signed using the certificate,
and sent to the contact peer. It is to be noted that the token generation event is
expected to induce the eventual removal of a token.

The leave operation is managed similarly: upon leaving, a node produces
a token with a leave event recorded in the update list. Failure detection is
managed likewise, although the protocol is resilient to the presence of crashed
nodes in the membership. In both cases the certificate of the failed node is
permanently invalidated: in case of restart the node will need a new certificate.

We assume the presence of unique CA, whose public key is available to
all nodes in the system, in charge of producing the certificates. The interplay
between the CA and the generic node falls outside the scope of this paper.

3. Experimental results
We notice that our solution features many decisions points that are resolved

using probabilistic assumptions: we were not able to assess its validity in the-
ory, and we attempted a experimantal validation using a prototype implemen-
tation run on a testbed of 191 nodes.

The protocol implementation counts approximately 200 Perl lines. Since we
were mostly interested in system dynamics, we opted for two simplifications:
we did not implement authentication and the leave event.

The former simplification is meant to have a small impact on the significance
of our protoytpe: in a separate paper [4] we address experimental results for
an authenticated token passing protocol, and the impact of signing/checking is
minimal

The prototype has been run on a testbed on the development infrastructure
Grid5000 [1]. Grid5000 is a research project of the French Government. The
aim of this project is to develop a Grid platform where researchers and scien-
tists perform large scale experiments. Seventeen French national laboratories
are involved in this research project. The major funding agencies for Grid5000
include, the Ministeŕe de l’Education, de la Jeunesse et de la Recherche, ACI
Grid, INRIA, CNRS and some universities in France.

Grid5000 provides a very configurable and controllable environment for the
experiments. It also provides the necessary software tools for the reservation
of resources, deployment of experiments, for the monitoring and collection of
results. Users can tailor the environment according to the particular nature of



210 GRID AND SERVICES EVOLUTION

Figure 1. Frequency distribution of token interarrival time on nodes (log scale on y)

their experiments and data. To make the resource utilization optimal, the nodes
on the Grid5000 can be shared between the users at the CPU and core level.
Work is in progress to connect the Grid5000 with the Grid networks in other
countries like Netherlands and Japan.

From the user viewpoint Grid5000 works much like a 70’s batch system:
a submitted job is run when resources are available. This fact motivated the
adoption for our experiment of quite low time constants, in order to have a sig-
nificant result after a minimum time. We opted for an expected token latency of
30 msecs, roughly corresponding to a token passing operation, thus obtaining
very fast running tokens, and a target token receive interarrival time of 2.63
seconds. The size of the system was variable, and here we report an experi-
ment with a number of nodes that gradually reaches 191 nodes. The duration
of the experiment was set to 150 minutes: during the first 30 minutes the nodes
grow from one to 191. With such settings, we want to observe the behavior
of the system during a quite fast power on transient, and during a period of
stability. Using an approximated model, not illustrated in this paper, we expect
two tokens running in the system.

In order to assess the validity of our algorithm, we examine three quantities
that give an idea of the dynamics of the system: the token receive interarrival
time at each node, the number of tokens simultaneously circulating in the sys-
tem, the time to diffuse the notice of a join to all nodes.



Scalable Concurrency Control in a Dynamic Membership 211

The distribution of the interarrival time is in figure 1. The plot shows a peak
at the minimum value, corresponding to twait/kmax = 0.88secs, indicating
that tokens are usually enqueued before use: the “waving” trend of the plot has
a similar reason.

The frequency of interarrival times drops exponentially (note the logarith-
mic scale on the y axis), and the probability of a interarrival time longer than
3 seconds is less than 1 percent: interarrival time shows an average of 1.71
seconds, instead of the target 2.63.

In figure 2 we see the dynamic variation of tokens during the experiment. It
is quite evident the initial transient, during which the size of the system grad-
ually grows from 0 to 191 nodes: the number of tokens follows a linear slope,
and stabilizes to approximately 50 tokens, significantly more than expected.

Such a mismatch between the expected value and the experimental result is
mainly due to the value of the parameters that control the token generation and
removal rules, namely c and kmax: these parameters should be selected so that,
when the number of tokens in the system is optimal for the target interarrival
time, the probability of removing a token is equal to the probability of adding
one. This fact would ensure that the number of tokens is in equilibrium when
the number of tokens is optimal.

The evaluation of control parameters is difficult: although Internet perfor-
mance is sufficiently uniform in time and space, the extremely randomized de-
sign of our token exchange protocol makes impossible to compute in advance
the right value. An experimental tuning is therefore needed, but the robust-
ness of the protocol ensures that the same values can be used in many different
environments.

In our case, we used first guess values for our experiments: with the experi-
ence gained, we will refine the value of such parameters for next experiments.

Finally, we analyze figure 3 that helps evaluating the suitability of our pro-
tocol for broadcasting information to each node in the system. We recall that,
for the correct operation of our protocol, we only need that most of the nodes,
not necessarily all, receive a join update: the above results confirm this as a
matter of fact, but leave a question mark on the time that is needed to inform
each node about a join event.

Such results can be hardly checked against known theoretical results about
the cover time of a random walk [10]: we recall that broadcasting is managed
by a finite length list appended to the token, that several tokens are simultane-
ously running, and that each node merges its local event list with the one of the
received token, before forwarding it.

Figure 3 shows that the broadcast time is quite long, with an average of 25
minutes. Depending on the application this time may be of interest.



212 GRID AND SERVICES EVOLUTION

Figure 2. Variation of the number of tokens during the experiment

Figure 3. Frequency of broadcast times for join events

4. Conclusions and future works
The solution we propose makes extensive use of probabilistic assumptions:

therefore many performance parameters are characterized by distributions, not



Scalable Concurrency Control in a Dynamic Membership 213

by deterministic values. In order to validate its operation we implemented a
simplified version of the algorithm and we used Grid5000 as a testbed.

It is to be noted that the results in this paper come from one of the first
experiments: more experiments are scheduled in the short term.

From the results available so far we understand that the algorithm, although
probabilistic in nature, has a quite predictable behavior: the interarrival time of
tokens is quite concentrated in time, its distribution falls exponentially, and is
near to the requirements. An inside look at the engine shows that the number
of tokens in fact follows the size of the system, with a quite fast response to
variations. However, the number of tokens is higher than expected, and tokens
are short lived: this is a matter for future investigation. Membership changes
propagate and eventually reach all nodes in the system.

References
[1] Raphael Bolze, Franck Cappello, Eddy Caron, Michel Daydé, Frédéric Desprez, Em-

manuel Jeannot, Yvon Jégou, Stephane Lantéri, Julien Leduc, Noredine Melab, Guil-
laume Mornet, Raymond Namyst, Pascale Primet, Benjamin Quetier, Olivier Richard,
El-Ghazali Talbi, and Touche Iréa. Grid’5000: a large scale and highly reconfigurable
experimental grid testbed. International Journal of High Performance Computing Appli-
cations, 20(4):481–494, November 2006.

[2] Javier Bustos-Jimenez, Nicolas Bersano, Elisa Schaeffer, Jose Miguel Piquer, Alexandru
Iosup, and Augusto Ciuffoletti. Estimating the size of peer-to-peer networks using Lam-
bert’s W function. In Proceedings of the CoreGRID Integration Workshop 2008, pages
51–62, Hersonissos, Greece, April 2008.

[3] Nimmagadda Chalamaiah and Badrinath Ramamurthy. Multiple token distributed loop
local area networks: Analysis. In 5th International Conference On High Performance
Computing, pages 400 – 407, December 1998.

[4] Augusto Ciuffoletti. Secure token passing at application level. In 1st International Work-
shop on Security Trust and Privacy in Grid Systems, page 6, Nice, September 2007.
submitted to FGCS through GRID-STP.

[5] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica. Wide-
area cooperative storage with CFS. In Proceedings of the 18th ACM Symposium on
Operating Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada, October
2001.

[6] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communica-
tions of the ACM, 17(11):643–644, 1974.

[7] Schlomi Dolev, Elad Schiller, and Jennifer Welch. Random walk for self-stabilizing
group communication in ad-hoc networks. In Proceedings of the 21st Simposium on
Reliable Distributed Systems (SRDS), Osaka, Japan, October 2002.

[8] Feige. A tight lower bound on the cover time for random walks on graphs. RSA: Random
Structures and Algorithms, 6, 1995.

[9] M. Flatebo, A.K. Datta, and A.A. Schoone. Self-stabilizing multi-token rings. Dis-
tributed Computing, 8(3):133–142, 1995.

[10] L. Lovasz. Random walks on graphs: a survey. In D. Miklos, V. T. Sos, and T. Szonyi,
editors, Combinatorics, Paul Erdos is Eigthy, volume II. J. Bolyai Math. Society, 1993.



214 GRID AND SERVICES EVOLUTION

[11] Bernard Thibault, Alain Bui, and Olivier Flauzac. Topological adaptability for the dis-
tributed token circulation paradigm in faulty environment. In Jiannong Cao, editor, Sec-
ond International Symposium on Parallel and Distributed Processing and Applications
– Hong Kong (China), number 3358 in Lecture Notes in Computer Science, pages 146–
155. Springer, 2004.

[12] S. Tixeuil and J. Beauquier. Self-stabilizing token ring. In Proceedings of the Eleventh
International Conference on System Engineering (ICSE’96), Las Vegas, USA, July 1996.

[13] B. Volckaert, P. Thysebaert, M. De Leenheer, F. F. De Turck, B. Dhoedt, and P. De-
meester. Network aware scheduling in grids. In Proc. of the 9th European Conference on
Networks and Optical Comm unications, page 9, Eindhoven, The Netherlands, Jun 2004.


