
Performance stabilization of a token based
epidemic diffusion

Augusto Ciuffoletti 1†

1INFN-CNAF – Via B. Pichat, Bologna – ITALY – e.mail:augusto@di.unipi.it

We introduce a membership management scheme based on a number of tokens that randomly propagate advertisements
within the membership itself. In order to stabilize update latency, in spite of relevant variations of membership size, we
introduce a distributed rule that dynamically controls the number of wandering tokens.

A formal analysis of system behavior allows to compute the relevant design parameters, and simulation results prove
the validity of our claims.

By way of a use case the reader appreciates the properties of extreme scalability, security and simplicity that makes the
protocol appealing in a Grid environment.

Keywords: performance stabilization, randomized diffusion, membership management

1 Introduction and related works
The operation of a large distributed system is usually based on some sort of shared knowledge, that allows
the coordination of its parts. The peer to peer approach stresses this aspect of distributed computing, on
which security depends: in a word, agents need to have a way to recognize trustworthy partners, and ignore
the others. This problem is just an instance of group membership management, which has been largely
studied in recent years [4, 5].

The introduction of a common knowledge may infringe the basic architectural principles of a distributed
system, by introducing a bottleneck, otherwise called a single point of failure, consisting in the server that
supports the database representing the common knowledge. This infraction disrupts system reliability and
scalability.

Database replication is a partial solution of the problem, when it does not rely on human intervention
to adapt to a changing environment: the concept of federated service can be used, (as in [2]) to make the
system dynamically adaptable to a variable load.

However, this approach leaves unsolved the design of the mechanisms used to access the database, since
an increase in the number of replicas degrades the performance of update operations, which must ensure
the convergence of the system to a consistent state: fulfillment of this requirement may become quite
expensive when system size scales up to thousands of replicas.

An interesting concept on this side is the epidemic broadcast, as illustrated in [3]: update requests are
diffused peer to peer, selecting the targets of successive diffusion rounds using a randomized rule. Stochastic
diffusion proves to scale well with system size, while ensuring a high degree of predictability.

The application of epidemic broadcast to the management of a membership is not a new idea [6], and the
main problem with an epidemic-style diffusion is bound to load distribution: this can be non-homogeneous,
in time and space, thus leading to congestion. In [7], the authors observe that epidemic diffusion tends to
insist on domain boundaries. In [8] a discard policy is introduced to prevent congestion.

†This research work is carried out under the FP6 Network of Excellence – CoreGRID project funded by the European Commission
(Contract IST-2002-004265)



Augusto Ciuffoletti

In a spirit similar to [9], we introduce an epidemic diffusion scheme that exhibits a predictable overhead
on the network and on the processing components of the system: congestion is therefore prevented. Local
overhead is independent from system size, which can therefore scale up indefinitely. Expected update
latency is kept invariant with respect to system size, so that distributed applications can rely on this value.
Variations of system size reflect linearly on database operation throughput: a larger system will accept
less update requests per time unit, exhibiting a linear degradation trend. An explicit admission control is
introduced for update requests: applications that require a given quality of service are thus enabled to take
appropriate actions depending on offered throughput.

In order to implement these features we introduce a randomized circulation of a number of tokens. Also
in [10] authors note (for the case of a single token) that such a paradigm is appropriate to dynamic environ-
ments, making reference to wireless networks. Here we introduce, with reference to a Grid environment,
a dynamically adaptive protocol that regulates the number of tokens depending on the size of the system
(without having this number stored anywhere), in order to keep update latency invariant. Since we want to
keep the message length as a system costant, it happens that we need to introduce an explicit acceptance
of update requests: in a larger system a (linearly) longer time will pass between back to back successive
admissions. An alternative to this performance degradation is the introduction of variable length tokens:
in that case system throughput remains constant at the expense of the length of the token, which increases
linearly with the size of the system.

1.1 A use case
The scheme that we propose has been designed to solve a specific problem, from which it takes the require-
ments: the database supports a directory service used to manage a membership of agents that implement a
Grid service. Each entry contains a certificate used to authenticate the agent, as well as its capabilities.

In such a system, the load of the database in unevenly divided into select queries, which do not alter
the database, and update queries. Since the number of select dominates the number of update, we
opt to replicate the database, and make it accessible through proxies. A generic user application will address
a select query to a local proxy.

In our case select queries have poor or no locality, so we consider that each replica contains the whole
database. This makes the creation of a new replica an expensive operation, with a cost of the order of O(n)
due to the download of a nearly complete database from another replica. This drawback is acceptable in
our use case, since the creation of a new replica is an infrequent event.

A common feature of probabilistic algorithms (and of any real world thing, in fact), is that it may fail:
appropriate recovery mechanisms must be provided to cope with these events. In our case, the content of
all replicas should converge, even in the event that the probabilistic epidemic diffusion fails to reach each
proxy.

The state of the art in distributed recovery binds the implementation of this statement to the fact that
database content is managed according using consistently timestamped atomic transactions. In our case,
we observe that, while select queries are submitted by a generic user application, update requests are
submitted by one of the resources represented in the database; access rights are therefore well defined and
quite restrictive: only the resource itself can modify the record that defines it.

This originates a trivial timestamping rule, which simply requires that timestamps grow linearly in time,
with no other bound with real time: missing transactions in a log are identified by missing timestamps,
and are recovered downloading the missing update request either from the resource itself, or from another
replica. In our case, the processing of a new update request consists of the following steps:

1. check if the timestamp associated in the database last update to the record of the service is immedi-
ately preceding that of the current update request;

2. if not, download and process the update requests from the proxy originating the current update re-
quest, starting from the one with timestamp following that in the local record, and up to the one with
timestamp preceding the one of the received update;

3. process the update request and record the attached timestamp.



Formatting a submission for WRAS

Summarizing, the accessibility of the database should conform to the following requirements:

• applications are enabled to commit an update request, with high probability of success;

• recovery events must be extremely infrequent, and transparent.

• dynamic configuration of database management must be automatic in a wide range of variability of
system size;

• database management must have a footprint on local system resources which is independent from the
size of the system;

2 Database management
Update requests are broadcast to all proxies in the system, that process them on the local replica. Broadcast
is implemented by a peer to peer epidemic protocol, that uses a number of tokens randomly moving from
proxy to proxy. Since the communication protocol used to move a token between two proxies is at transport
level, we assume that network topology is a full mesh, where each proxy is adjacent to any other. No overlay
network is introduced, and routes are unknown.

The only piece of data needed to boot a new proxy is the identity of another proxy selected at random:
the boot proxy. We assume this information to be provided by the Certification Authority, upon registration
of the new proxy, together with proxy certificate. The newcomer sends one (signed) token to the boot
proxy, and downloads from it the local database replica. Although the download of the whole content of
the database is not needed in principle (it has been proved that epidemic membership works efficiently with
small parts of the membership known to members), we opt, for sake of adherence to our use case, to assume
that the whole database is downloaded.

All tokens are signed by the sender using a private key associated with its certificate; upon receiving a
token, a proxy checks its signature against sender’s certificate, which contains its public key: it will query
the sender for a full record of its capabilities and of its certificate only in case it is not already recorded in
the local replica. If the token is valid the receiver scans the update list in the token: each token contains
a list of update requests, managed as a FIFO stack of bounded capacity. The proxy will perform those that
have not been executed yet: timestamps attached to each update request help to identify them. In case the
receiving proxy knows of transactions not recorded in the token, it pushes these transactions in the token,
pushing out overflowing ones, and sends the token to another proxy, chosen at random among those in the
local database.

Such a simple protocol (see figure 1) exhibits a performance that depends on many system parameters,
among others the number of proxies in the system. Therefore it must be complemented with a protocol
that regulates operational parameters, in order to stabilize its performance, as announced by the title of this
paper.

2.1 Performance stabilization
The performance figure we want to maintain stable is the latency of a an update request. Since the protocol
is inherently randomized, we need a probabilistic description of this time lapse, that we call saturation time,
tsat .

Definition 1 Let tsat be the stochastic variable representing the interval between the time when an update
request is posted by an application, and the time when the update has been processed by all proxies. Given
a (low) probability value psat , we indicate with Tsat the time interval such that:

p(tsat > Tsat) < psat

In our environment, the value of Tsat is a system constant, and represents the expected latency of an
update request, while the value of 1− psat corresponds to our concept of “high probability”. We compute
the distribution of tsat , introducing some approximation as explained in [1]:



Augusto Ciuffoletti

Fig. 1: Flowchart of proxy operation



Formatting a submission for WRAS

Tsat 40 time units expected latency of an update request
psat 0.001 probability that a proxy is not informed within Tsat
dt 0.03 time units latency of a token, between receive and resend
L 10 requests capacity of the token (in update requests)

Tab. 1: System constants used in examples and simulations

p(tsat > Tsat)∼ 2∗ e
−Tsat ∗N

2∗dt∗(n−1)

The appropriate number of tokens in the system, in order to meet the requirements for tsat , is:

N =−
2∗dt ∗ (n−1)∗ ln

(
p(tsat>Tsat )

2

)
Tsat

Therefore, by injecting or removing packets in the system, a proxy can control the target performance
figure. Now we need to identify a control parameter to trigger compensating actions.

A node has a direct feedback about system response time: the average interarrival time between tokens,
twait , is bound to the value of Tsat (see [1] for a formal explanation of this intuitive fact). The observed
interarrival time of tokens can be therefore used to stabilize the target performance figure.

The average value of twait , if the number of wandering tokens is the expected one, should be the inter-
arrival time of a Poisson process with a (low) probability of success 1/(n−1). Since N experiments (i.e.,
token transfers) are performed every dt time units:

exp(twait) =
(n−1)∗dt

N

and, using the expected value of N computed above:

exp(twait) =− Tsat

2∗ ln
(

p
( tsat>Tsat

2

))
We conclude that the compensating action of a proxy which observes an average interarrival time diverg-

ing from the expected value is to add (or remove) a token. Appropriate mechanisms are used to make the
estimate of the average token interarrival time sufficiently robust.

Finally, let us use the values in the table 1 for an example: if we want that tsat is less than 40 seconds with
a high probability (99.9%), assuming that the token has a latency of 30 msecs each time it is passed from
proxy to proxy, we need that each proxy receives a token every 2.63 seconds (exp(twait)), on the average.
All this is independent from the size of the system, but in the case of a system composed of n = 1000
proxies we stabilize with 11 (N) tokens circulating in the system. Variations of system size should reflect
in (linear) variations of the number of tokens.

2.2 A policy to accept new update requests
The size of the message should be sufficient to accommodate all updates occurring during Tsat ; they are
arranged in a stack contained in the payload of the token. A straightforward design option might be the
introduction of some kind of time to live for each entry in the stack bound to Tsat , a system constant. This
apparently appealing option has two practical limits: it introduces some kind of common time reference in
the algorithm (which till now has none), and implies that token size grows linearly with system size. To
justify the latter point, we consider that we may expect that the number of update requests per time unit
grows linearly with the size of the system.

We opt for a difference strategy, which is more adequate to our use case: we keep constant the capacity
of the token, and assume that update requests are submitted to an admission control that may delay them.



Augusto Ciuffoletti

Once admitted, they are served within the Tsat deadline with known probability. In our case, this alternative
is an acceptable compromise between the predictability of update latency, and the increased workload.

The goal of the admission control will be to ensure that each update request persists in the token for the
time needed to reach all proxies in the system: for this each proxy will limit the frequency of admitted
update requests. If update requests on a proxy are too frequent, they are delayed so that they do not prevent
the diffusion of other update requests. In our use case update requests are infrequent, and local congestion
is not an issue. Instead, we want to use UDP packets as token carriers, for which a fixed size is notably an
advantage, and want that update requests commit are predictable, not fast.

Once the admission control is passed, the processing of an update request follows a FIFO discipline: it is
pushed in the first place in token stack, while the last one is pushed out.

We consider the token as a buffer of L positions where update requests should stay for an expected time
Tsat : in order to avoid premature overflow, the average interarrival time of update requests (considering the
whole system) should be less than Tsat/L, in stable operation. On a single proxy:

irupdate = (Tsat ∗n/L)

Since this value depends on n, the number of proxies in the system, it is exposed to two adverse facts:

• this value is in principle unknown

• it may change dynamically

Concerning the latter point, we argue that we cannot set up any sort of timer in order to regulate the
occurrence of an update, since the value of this timer should change dynamically.

We opt for a regulation based on a probabilistic policy: if we compute the rate with which passing tokens
can be used by a proxy to insert a new update, we are able to setup a random rule that converges to that
expected value.

The target rate can be computed using the above expressions:

irupdate

exp(twait)
=

Tsat ∗N
L∗dt

which is the desired rate of success for our randomized rule: note that it depends on N, the number of
tokens in the system, which is unknown to the proxy.

The mechanism we propose for estimating the number of active tokens in the network is quite simple,
although imprecise: tokens are identified by a uid, generated at random upon token creation, and each proxy
keeps a list of recently seen token identifiers with an attached timestamp. Upon receiving a token the proxy
updates the associated timestamp. Token id timestamps are checked, and recent ones are associated to living
tokens, while those whose age exceeds by several times the value of exp(twait) are popped out of the stack.
Note that, also in this case, timestamps are not representative of a global time reference.

2.3 Database management footprint
We require that the load on each proxy does not depend on the size of the system: this requirement holds
since the interarrival time of tokens on a given proxy is kept invariant (with an expected value which
corresponds to exp(twait)). Therefore the network load for each proxy is constant, and corresponds to:

bw =−
2∗L∗ ln

(
p(tsat>Tsat )

2

)
Tsat

Since the behavior of the overall system is exposed to failures, we should take into account also the cost
for recovering from them. In our case, the failure materializes as the loss of some update requests. There
are many reasons for which this event may occur, that are bound to the probabilistic nature of the scheme;
to give an account of some of them:



Formatting a submission for WRAS

Fig. 2: Variation of the number of tokens in the system. Smaller graphs are magnified views of two transients described
in the paper.

• the token containing the update request is deleted as an effect of the application of token count
regulation rules;

• the request overflows from all tokens before some of the proxies is reached;

Although these events are labelled as infrequent, it is hard to assess analytically their frequency.
The simulation results that follow are used to give a working evidence of the behavior of the system, and

to have an idea of the frequency of recovery actions. We note that the simulator is not used as a design tool:
the design of a real system is based on the expressions introduced above, using simulation only to confirm
the results.

3 Simulation results
We used a simulator written ad-hoc (500 lines of terse Perl code, available on demand) to simulate a system
initially composed of 1000 proxies during 10000 time units: from time 1000 the system rapidly grows,
and 100 new proxies join the system during the successive 4000 time units. We observe the stabilization
transient during the final 5000 time units. Update request queues on proxies are assumed to be permanently
busy, so that throughput is maximum. Table 1 summarizes system constants, the same used in the previous
example.

Note that token capacity is quite low: 10 update requests. This is due to the limited scalability of the
simulator. In a working environment a much higher capacity is more appropriate. In addition, some reader
may find useful to replace “time unit” with “second”, to have an idea of the applicability of our results.

Figure 2 summarizes the stabilization scheme dynamics displaying the variations of the number of wan-
dering tokens.



Augusto Ciuffoletti

We observe that, during stable operation (intervals [0,1000] and [5000− 10000]), the number of tokens
is stable as well, although slightly below the expected value (11 tokens in our case): this fact is justified by
the approximations introduced with theoretical analysis, and has no practical relevance.

The number of tokens oscillates when the system is exposed to transients due to induced or random
phenomena. Magnified views of these transients are shown in the same figure.

During interval [1000,5000], frequent joins slightly disturb the system: however, extra tokens generated
by join events are quickly removed.

Around time 6800 an extremely unlikely event occurs: 10 of the 12 circulating tokens hit the same proxy
during a time interval of less than 8 time units (the expected interarrival time between tokens on a proxy is
2.6 time units). As a consequence, they are all deleted and only two tokens survive in the system. During
the successive 40 time units the system reacts with the creation of 39 tokens, of which 31 are deleted during
the successive 10 time units. The system ends up with 10 tokens, and the rebound lasts 50 time units: a long
range effect is recorded on local estimates of the number of tokens in the system, and produces a number
of recovery actions, as shown in figure 3.

Figure 3 aims at showing the performance of the system as perceived by a applications submitting update
requests, as well as an insight of its operation. The time interval has been divided into slots of 100 time
units each, and aggregated statistics are shown for each slot.

The bottom graph illustrates the number of update requests accepted during a time slot: we observe a
minor performance degradation during system growth during interval [1000,5000], but the throughput is
overall stable. The average interval between successive services on each proxy is around 5000 time units,
which agrees with the expected value of 4000 time units (irupdate).

The middle graph reports the number of recovery actions during each time slot: we observed 82 recovery
actions. According with the recovery scheme introduced in section 1.1, we assimilate the load induced by
the recovery of a lost update to that of a token passing operation: both of them consist of a point to point
communication between proxies trusting each other. Since during the simulated interval approximately
4∗106 tokens are passed in the system, the traffic induced by recovery activity corresponds to 20 parts per
million.

The top graph shows the estimated value of the number of tokens: we observe that it tends to diverge
when the system is exposed to transients due to induced or random phenomena. In fact, the extra tokens
generated by joins, although promptly removed, persist in proxies data structures and are considered as
living for a long period of time: this distorts the estimates of the proxies concerning the number of living
tokens, but has no overall performance effects.

4 Conclusions
We have introduced a broadcast scheme based on epidemic diffusion. The key feature of that scheme is
the predictability of its overhead and performance, despite it is based primarily on randomized decisions,
regardless the size of the system.

We discuss the applicability to such a scheme for the solution of a practical problem, taking into account
issues that are relevant in practice, like security, packet sizing, and design parameter estimates. We conclude
with results for a system of 1000 proxies obtained using a simulator designed ad-hoc.

References
[1] Augusto Ciuffoletti. Scalable accessibility of a recoverable database using a wandering token. Tech-

nical Report TR-06-02, Università di Pisa, Largo Pontecorvo - Pisa -ITALY, January 2006.

[2] Francisco Matias Cuenca-Acuna and Thu D. Nguyen. Self-managing federated services. In Proc. of
the 23rd IEEE Symposium on Reliable Distributed Systems. IEEE Press, October 2004.

[3] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart, and
D. Terry. Epidemic algorithm for replicated database maintenance. In Proc. of ACM Symposium on
Principles of Distributed Computing, pages 1–12, Vancouver (CANADA), August 1987.



Formatting a submission for WRAS

Fig. 3: Overview of a simulation lasted 10000 time units. Time is represented along x axis, and all graphs take samples
every 100 time units. The top graph shows the number of tokens in the system at the beginning of each time slot,
represented as a continuous green line, and the corresponding estimate of the proxies: red vertical lines represent
intervals containing 90% of local estimates, dots and crosses respectively minimum and maximum local estimates. The
middle graph illustrates the recovery activity during each time slot, in terms of the number of recovery actions executed
during that lapse. The bottom graph outlines the activity of the system as observed by user applications, in terms of
processed updates.

[4] Cristian F. Agreeing on who is present and who is absent in a synchronous distributed system. In
Proc. of 18th International Symposium on Fault-Tolerant Computing, pages 206–210, June 1988.

[5] Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massouli. Peer-to-peer membership man-
agement for gossip-based protocols. IEEE Transactions on Computers, 52(2), February 2003.

[6] Richard A. Golding and Kim Taylor. Group membership in the epidemic style. Technical Report
UCSC-CRL-92-13, University of California, Santa Cruz, 1992.

[7] Indranil Gupta, Anne-marie Kermarrec, and Ganesh Ayalvadi. Efficient epidemic-style protocols for
reliable and scalable multicast. In Proc. IEEE Intl. Symposium on Reliable Distributed Systems, 2002.

[8] J. Pereira, L. Rodrigues, J. Monteiro, M., R Oliveira, and A.-M. Kermarrec. NEEM:network-friendly
epidemic multicast. In Proc. of the 22nd IEEE Symposium on Reliable Distributed Systems, Florence,
October 2003.



Augusto Ciuffoletti

[9] L. Rodrigues, S. Handurukande, J. Pereira, R. Guerraoui, and A.-M. Kermarrec. Adaptive gossip-
based broadcast. In Proceedings of the International Conference on Dependable Systems and Net-
works, San Francisco (CA), June 2003.

[10] Bernard Thibault, Alain Bui, and Olivier Flauzac. Topological adaptability of the distributed token
circulation paradigm in faulty environment. In Parallel and Distributed Processing and Applications,
number 3358 in Lecture Notes in Computer Science, pages 146–155. Springer Berlin / Heidelberg,
2004.


