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The problem and our solution

PROBLEM
• Maintain shared knowledge
• Requirements:

– predictable (low) overhead
– predictable update latency
– expandability
– scalability

SOLUTION
• Use an epidemic diffusion pattern
• Diffusion is supported by “wandering” tokens
• The number of tokens adapts to system size
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Self stabilization issues

• The number of tokens stabilizes around a value which 
depends on:
– the size of the system (variable)
– the required update latency (constant)

Token Number = Number of units / Latency

• Token loss events are managed with the same 
mechanism used to introduce new tokens when system 
grows

• Presence of spurious tokens is managed with the same 
mechanism used to remove tokens when system shrinks
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Extended use of probabilistic techniques

Probabilistic technique 
= 

success with high probability

• Wandering token ensures a fair behavior with high 
probability

• Timing ruled token generation ensures a stable 
regulation of the number of tokens with high probability

• Timing ruled token removal ensures a stable regulation of 
the number of tokens with high probability
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Regulate number of tokens in the system

Expected token interarrival:

Ti=Latency*O(1-pfail)

(extended formula in paper)

Timeout =  Ti*3

Early token threshold: Ti/3

NOTE:

Flow control depends only on 
required latency and 
reliability
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Self-referential use case: membership

• An Internet transport 
level token circulation 
needs the availability of 
a registry of all 
members

• One way to propagate 
changes to the 
membership is syncing 
the databases of the 
peers exchanging the 
token
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Pass token
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Complexity of synchronization

• Database synchronization is needed to:
– propagate join/leave events
– maintain a database of public keys

• In order to limit its footprint, we consider that (except for 
initialization) each synchronization operation requires the 
transfer of a limited number of events (the “capacity” of the 
token)

• Each host regulates the number of new events included in a 
synchronization operation (FIFO)

• The frequency of updates on a single host is limited:

Inter-arrival=(Latency*Size)/Capacity

• The inter-arrival time depends on system size!
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A scalable rule to regulate update frequency

• The number of updates during one single synchronization is 
limited by a system wide value

• A stack of updates (of limited size) is maintained, and 
governed FIFO

• A new push occurs at times that are determined using a 
randomized rule

• For each token visiting the host, a pending update is 
injected with probability:

(Latency*Tokens)/(Capacity*TokenLatency)

• Such rule probabilistically ensures that each update has 
enough time to reach every host
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Intrinsically randomized

• Randomized decision:
– to compensate token loss
– to compensate token duplication
– to stabilize event latency
– to stabilize system load

• An analytic verification is awkward: we opt for a simulation
• Parameters:

Latency 40 secs

Pfail 0.1%

Token latency 30 msec

Capacity 10 events
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Event Latency without self regulation

• Event Latencies in a system 
of 1000 units containing the 
expected number of token 
(indeed, 11 instead of 11.4)

• No regulation: we just check 
whether the Event Latency 
falls above 40 secs a number 
of times compatible with a 
probability of 0.1%

• The frequency is in fact 
slightly above that: about 
0.5%
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Token Number Regulation

• Duration 10000 
seconds (2h 45')

• We need to keep the 
number of tokens 
around 11

• We inject a massive 
join from time 1000 to 
time 5000 to test 
stability (100 units 
join)

• An unexpected event 
around time 6800
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Local estimate of the number of tokens

• This value is used 
to regulate update 
frequency.

• During normal 
operation, hosts 
perceive a number 
of tokens slighly 
higher than real

• During growth 
transient that gap 
increases

• The number of 
updates per period 
is quite stable
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Conclusions

• We have explored the potential of a technique useful to 
maintain a shared database

• The membership sharing such knowledge is variable, one 
application of our algorithm is its maintenance

• We made extensive use of probabilistic rules: the result is 
an algorithm with a extremely low overhead, and 
characterized by an extreme scalability

• Its behavior cannot be analyzed formally above the first 
order characteristics: we propose a series of simulations

• The results prove that the behavior of the system is quite 
adherent to expectations (first order) and stable

• More investigation needed... 


