
WRAS 2007 - Paris

Performance stabilization of
a token based epidemic diffusion

Augusto Ciuffoletti
INFN/CNAF - Italy

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

The problem and our solution

PROBLEM
• Maintain shared knowledge
• Requirements:

– predictable (low) overhead
– predictable update latency
– expandability
– scalability

SOLUTION
• Use an epidemic diffusion pattern
• Diffusion is supported by “wandering” tokens
• The number of tokens adapts to system size

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Self stabilization issues

• The number of tokens stabilizes around a value which
depends on:
– the size of the system (variable)
– the required update latency (constant)

Token Number = Number of units / Latency

• Token loss events are managed with the same
mechanism used to introduce new tokens when system
grows

• Presence of spurious tokens is managed with the same
mechanism used to remove tokens when system shrinks

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Extended use of probabilistic techniques

Probabilistic technique
=

success with high probability

• Wandering token ensures a fair behavior with high
probability

• Timing ruled token generation ensures a stable
regulation of the number of tokens with high probability

• Timing ruled token removal ensures a stable regulation of
the number of tokens with high probability

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Regulate number of tokens in the system

Expected token interarrival:

Ti=Latency*O(1-pfail)

(extended formula in paper)

Timeout = Ti*3

Early token threshold: Ti/3

NOTE:

Flow control depends only on
required latency and
reliability

yes

Wait for token

New token

Timeout Early token?

Receive

no

Process Token

Entry point

Timeout

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Self-referential use case: membership

• An Internet transport
level token circulation
needs the availability of
a registry of all
members

• One way to propagate
changes to the
membership is syncing
the databases of the
peers exchanging the
token

Init

Pass token
to peer

Wait token

Validate token

Sync DB
with peer

Acquire certificate
and contact peer

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Complexity of synchronization

• Database synchronization is needed to:
– propagate join/leave events
– maintain a database of public keys

• In order to limit its footprint, we consider that (except for
initialization) each synchronization operation requires the
transfer of a limited number of events (the “capacity” of the
token)

• Each host regulates the number of new events included in a
synchronization operation (FIFO)

• The frequency of updates on a single host is limited:

Inter-arrival=(Latency*Size)/Capacity

• The inter-arrival time depends on system size!

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

A scalable rule to regulate update frequency

• The number of updates during one single synchronization is
limited by a system wide value

• A stack of updates (of limited size) is maintained, and
governed FIFO

• A new push occurs at times that are determined using a
randomized rule

• For each token visiting the host, a pending update is
injected with probability:

(Latency*Tokens)/(Capacity*TokenLatency)

• Such rule probabilistically ensures that each update has
enough time to reach every host

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Intrinsically randomized

• Randomized decision:
– to compensate token loss
– to compensate token duplication
– to stabilize event latency
– to stabilize system load

• An analytic verification is awkward: we opt for a simulation
• Parameters:

Latency 40 secs

Pfail 0.1%

Token latency 30 msec

Capacity 10 events

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Event Latency without self regulation

• Event Latencies in a system
of 1000 units containing the
expected number of token
(indeed, 11 instead of 11.4)

• No regulation: we just check
whether the Event Latency
falls above 40 secs a number
of times compatible with a
probability of 0.1%

• The frequency is in fact
slightly above that: about
0.5%

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Token Number Regulation

• Duration 10000
seconds (2h 45')

• We need to keep the
number of tokens
around 11

• We inject a massive
join from time 1000 to
time 5000 to test
stability (100 units
join)

• An unexpected event
around time 6800

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Local estimate of the number of tokens

• This value is used
to regulate update
frequency.

• During normal
operation, hosts
perceive a number
of tokens slighly
higher than real

• During growth
transient that gap
increases

• The number of
updates per period
is quite stable

European Research Network on Foundations, Software Infrastructures and Applications for large scale distributed, GRID and Peer-to-Peer Technologies

Conclusions

• We have explored the potential of a technique useful to
maintain a shared database

• The membership sharing such knowledge is variable, one
application of our algorithm is its maintenance

• We made extensive use of probabilistic rules: the result is
an algorithm with a extremely low overhead, and
characterized by an extreme scalability

• Its behavior cannot be analyzed formally above the first
order characteristics: we propose a series of simulations

• The results prove that the behavior of the system is quite
adherent to expectations (first order) and stable

• More investigation needed...

